Skip to main content

Structural instability of an oscillating superparamagnetic micro-bead chain

Abstract

Issues concerning the structural instability of an oscillating micro-bead chain are addressed based on systematic experiments. The patterns of rupture are categorized into two distinct regimes, referred to as a weak ductile fracture and a strong ductile fracture. A weak ductile fracture describes a more rigid rupture, which often occurs in a pronounced oscillation driven by strong field strengths. The position of the rupture usually favors toward the two sides of the chain. An interesting phenomenon of a reversed rupture, wherein the ruptured segments oscillate in opposite directions, is observed when there is excessive field strength. An important consequence of the reversed rupture is to cause permanent failure of the chaining structure. On the other hand, a strong ductile fracture, featuring significant deformation before rupture, is favored in a more viscous solvent fluid. The positions of the breakages in this regime favor the central region of the chain. The prominence of rupture instability is enhanced by a weaker directional field or by a longer chain, which is in agreement with quantitative assessments by the normal forces acting between the interfaces of beads. In addition, results of the present experiments provide further validations of the global criterion for rupture instability given by \(Mn^{1/2}*N>1.7,\) where Mn and N, respectively, represent the dimensionless Mason number and the number of beads in the chain.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Banerjee U, Bit P, Ganguly R, Hardt S (2012) Aggregation dynamics of particles in a microchannel due to an applied magnetic field. Microfluid Nanofluid 13:565

    Article  Google Scholar 

  2. Biswal S, Gast A (2004) Rotational dynamics of semiflexible paramagnetic particle chains. Phys Rev E 69:041406

    Article  Google Scholar 

  3. Biswal S, Gast A (2004) Micromixing with linked chains of paramagnetic particles. Anal Chem 76:6448

    Article  Google Scholar 

  4. Cebers A (2005) Flexible magnetic filaments. Curr Opin Colloid Interface Sci 10:167

    Article  Google Scholar 

  5. Cebers A (2005) Flexible magnetic swimmer. Magnetohydrodynamics 41:63

    Google Scholar 

  6. Cebers A, Javaitis I (2004) Dynamics of a flexible magnetic chain in a rotating magnetic field. Phys Rev E 69:021404

    Article  Google Scholar 

  7. Cebers A, Ozols M (2006) Dynamics of an active magnetic particle in a rotating magnetic field. Phys Rev E 73:021505

    Article  Google Scholar 

  8. Crowe C, Schwarzkopf J, Sommerdeld M, Tsuji Y (2012) Multiphase flows with droplets and particles, 2nd edn. CRC Press, Boca Raton

  9. Dreyfus R, Baudry J, Roper M, Fermigier M, Stone H, Bibette J (2005) Microscopic artificial swimmers. Nature 437:862

    Article  Google Scholar 

  10. Erglis K, Zhulenkovs D, Sharipo A, Cebers A (2008) Elastic properties of DNA linked flexible magnetic filaments. J Phys Condens Matter 20:204107

    Article  Google Scholar 

  11. Frka-Petesic B, Erglis K, Berret JF, Cebers A, Dupuis V, Fresnais J, Sandre O, Perzynski R (2011) Dynamics of paramagnetic nanostructured rods under rotating field. J Magn Magn Mater 323:1309

    Article  Google Scholar 

  12. Gao Y, Hulsen MA, Kang TG, den Toonder JMJ (2012) Numerical and experimental study of a rotating magnetic particle chain in a viscous fluid. Phys Rev E 86:041503

    Article  Google Scholar 

  13. Goubault C, Jop P, Fermigier M, Baudry J, Bertrand E, Bibette J (2003) Flexible magnetic filaments as micromechanical sensors. Phys Rev Lett 91:260802

    Article  Google Scholar 

  14. Kang TG, Hulsen M, Anderson P, den Toonder JMJ, Meijer H (2007) Chaotic mixing induced by a magnetic chain in a rotating magnetic field. Phys Rev E 76:066303

    Article  Google Scholar 

  15. Karle M, Wohrle J, Miwa J, Paust N, Roth G, Zengerle R, von Stetten F (2011) Controlled counter-flow motion of magnetic bead chains rolling along microchannels. Microfluid Nanofluid 10:935

    Article  Google Scholar 

  16. Lacharme F, Vandevyver C, Gijs M (2009) Magnetic beads retention device for sandwich immunoassay comparison of off-chip and on-chip antibody incubation. Microfluid Nanofluid 7:479

    Article  Google Scholar 

  17. Li Y-H, Chen C-Y, Sheu S-T, Pai J-M (2012a) Dynamics of a microchain of superparamagnetic beads in an oscillating field. Microfluid Nanofluid 13:579

    Article  Google Scholar 

  18. Li Y-H, Sheu S-T, Pai J-M, Chen C-Y (2012b) Manipulations of oscillating micro magnetic particle chains. J Appl Phys 111:07A924

    Google Scholar 

  19. Li Y-H, Lin H-C, Chen C-Y (2013a) Trajectory shift of magnetic microchains in an oscillating field. Microfluid Nanofluid 14:831

    Article  Google Scholar 

  20. Li Y-H, Bansal E, Chen C-Y (2013b) Breakups of magnetic chains in an oscillating field. Magnetohydrodynamics (accepted)

  21. Li Y-H, Lin H-C, Chen C-Y (2013c) Steering of magnetic micro-swimmers. IEEE Trans Magn 49(7):4120

    Article  Google Scholar 

  22. Melle S, Martin JE (2003) Chain model of a magnetorheological suspension in a rotating field. J Chem Phys 118:21

    Article  Google Scholar 

  23. Melle S, Fuller G, Rubio M (2000) Structure and dynamics of magnetorheological fluids in rotating magnetic fields. Phys Rev E 61:4111

    Article  Google Scholar 

  24. Melle S, Calderon O, Fuller G, M. Rubio (2002a) Polarizable particle aggregation under rotating magnetic fields using scattering dichroism. J Colloid Interface Sci 247:200

    Article  Google Scholar 

  25. Melle S, Calderon O, Rubio M, Fuller G (2002b) Rotational dynamics in dipolar colloidal suspensions: video microscopy experiments and simulations results. J Non-Newton Fluid Mech 102:135

    Article  MATH  Google Scholar 

  26. Melle S, Calderon OG, Rubio MA, Fuller GG (2003) Microstructure evolution in magnetorheological suspensions governed by Mason number. Phys Rev E 68:041503

    Article  Google Scholar 

  27. Nguyen NT (2012) Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluid Nanofluid 12:1

    Article  Google Scholar 

  28. Petousis I, Homburg I, Derks R, Dietzel A (2007) Transient behaviour of magnetic micro-bead chains rotating in a fluid by external fields. Lab Chip 7:1746

    Article  Google Scholar 

  29. Roy T, Sinha A, Chakraborty S, Ganguly R, Puri I (2009) Magnetic microsphere-based mixers for microsroplets. Phys Fluids 21:027101

    Article  Google Scholar 

  30. Vuppu A, Garcia A, Hayes M (2003) Video microscopy of dynamically aggregated paramagnetic particle chains in an applied rotating magnetic field. Langmuir 19:8646

    Article  Google Scholar 

  31. Weddemann A, Wittbracht F, Auge A, Hutten A (2011) Particle flow control by induced dipolar interaction of superparamagnetic microbeads. Microfluid Nanofluid 10:459

    Article  Google Scholar 

  32. Wittbracht F, Weddemann A, Eickenberg B, Hutten A (2012) On the direct employment of dipolar particle interaction in microfluidic system. Microfluid Nanofluid 13:543

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Science Council of Republic of China (Taiwan) through Grant NSC 99-2221-E-009-057-MY3.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ching-Yao Chen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lin, HC., Li, YH. & Chen, CY. Structural instability of an oscillating superparamagnetic micro-bead chain. Microfluid Nanofluid 17, 73–84 (2014). https://doi.org/10.1007/s10404-013-1286-6

Download citation

Keywords

  • Ductile Fracture
  • Dynamical Field
  • Global Criterion
  • Solvent Fluid
  • Viscous Torque