Skip to main content
Log in

Physically based wall boundary condition for dissipative particle dynamics

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In this paper, we present a novel wall boundary condition model, which stands just on the physical facts, for the dissipative particle dynamics (DPD) method. After the validation of this model by means of the common benchmarks such as the Couette and the Poiseuille flows, we study the effects of this model on the diffusion coefficient in a wide variety of different coarse-graining levels. The obtained results show that the proposed model preserves the thermodynamics of the system, also eliminates the spurious effects of the wall, and consequently is able to preserve the accurate structural characteristics of the working DPD fluid in the wall’s vicinity. We also study the fluid flow through a channel with the polymer-coated walls. A comprehensive investigation into the wall–solvent–polymer interactions is presented for the solvents with different qualities. Since the working DPD fluid’s structure is heterogeneous, the working fluid’s structure, its density variations and the force field that is experienced by the working DPD fluid particles near the wall cannot be predicted before the simulation. Hence, all of these data have to be determined systematically during the simulation. We show that the force field experienced by the particles near the wall depends substantially upon the solvent quality. We also show that the force fields experienced by the particles from different types (solvent/polymer) in the wall’s vicinity are significantly different from each other except in the athermal solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Alarcon F, Perez E, Goicochea AG (2013) Dissipative particle dynamics simulations of weak polyelectrolyte adsorption on charged and neutral surfaces as a function of the degree of ionization. Soft Matter 9:3777

    Article  Google Scholar 

  • Altenhoff AM, Walther JH, Koumoutsakos P (2007) A stochastic boundary forcing for dissipative particle dynamics. J Comput Phys 225:1125

    Article  MATH  MathSciNet  Google Scholar 

  • Batistakis C, Lyulin AV, Michels MAJ (2012) Slowing down versus acceleration in the dynamics of confined polymer films. Macromolecules 45:7282

    Article  Google Scholar 

  • Cao Q, Zuo C, Li L, Ma Y, Li N (2010) Electroosmotic flow in a nanofluidic channel coated with neutral polymers. Microfluid Nanofluid 9:1051

    Article  Google Scholar 

  • Cao Q, Zuo C, Li L, Yang Y, Li N (2011) Controlling electroosmotic flow by polymer coating: a dissipative particle dynamics study. Microfluid Nanofluid 10:977

    Article  Google Scholar 

  • Chen H, Ruckenstein E (2011) Aggregation of nanoparticles in a block copolymer bilayer. Journal of Colloid and Interface Science 363:573

    Article  Google Scholar 

  • Cheng JT, Giordano N (2002) Fluid flow through nanometer-scale channels. Phys Rev E 65:031206

    Article  Google Scholar 

  • Chuarev NV, Sobolev VD, Somov AN (1984) Slippage of liquids over lyophobic solid surfaces. J Colloid Interface Sci 97:574

    Article  Google Scholar 

  • Cieplak M, Koplik J, Banavar JR (2001) Boundary conditions at fluid-solid interface. Phys Rev Lett 86(5):803

    Article  Google Scholar 

  • Craig V, Neto C, Williams D (2001) Shear-dependent boundary slip in an aqueous Newtonian liquid. Phys Rev Lett 87(5):054504

    Article  Google Scholar 

  • Dimitrov DI, Milchev A, Binder K (2007) Polymer brushes in solvents of variable quality: molecular dynamics simulations using explicit solvent. J Chem Phys 127:084905

    Article  Google Scholar 

  • Duong-Hong D, Phan-Thien N, Fan X (2004) An implementation of no-slip boundary conditions in dpd. Comput Mech 35:24

    Article  MATH  Google Scholar 

  • Duong-Hong D, Wang JS, Liu GR, Chen YZ, Han J, Hadjiconstantinou NG (2008) Dissipative particle dynamics simulations of electroosmotic flow in nano-fluidic devices. Microfluid Nanofluid 4:219

    Article  Google Scholar 

  • Elliott IG, Kuhl TL, Faller R (2010) Molecular simulation study of the structure of high density polymer brushes in good solvent. Macromolecules 43:9131

    Article  Google Scholar 

  • Espanol P, Warren P (1995) Statistical mechanics of dissipative particle dynamics. Europhys Lett 30:191

    Article  Google Scholar 

  • Fedosov DA, Pivkin IV, Karniadakis GE (2008) Velocity limit in dpd simulations of wall-bounded flows. J Comput Phys 227:2540

    Article  MATH  MathSciNet  Google Scholar 

  • Goicochea AG, Alarcon F (2011) Solvation force induced by short range, exact dissipative particle dynamics effective surfaces on a simple fluid and on polymer brushes. J Chem Phys 134:014703

    Article  Google Scholar 

  • Goujon F, Ghoufi A, Malfreyt P, Tildesley DJ (2012) Frictional forces in polyelectrolyte brushes: effects of sliding velocity, solvent quality and salt. Soft Matter 8:4635

    Article  Google Scholar 

  • Goujon F, Ghoufi A, Malfreyt P, Tildesley DJ (2013) The kinetic friction coefficient of neutral and charged polymer brushes. Soft Matter 9:2966

    Article  Google Scholar 

  • Goujon F, Malfreyt P, Tildesley DJ (2010) Interactions between polymer brushes and a polymer solution: mesoscale modelling of the structural and frictional properties. Soft Matter 6:3472

    Article  Google Scholar 

  • Groot RD, Warren PB (1997) Dissipative particle dynamics: bridging the gap between atomic and mesoscopic simulation. J Chem Phys 107(11):4423

    Article  Google Scholar 

  • Hong B, Qiu F, Zhang H, Yang Y (2010) Dissipative particle dynamics simulations on inversion dynamics of spherical micelles. J Chem Phys 132:244901

    Article  Google Scholar 

  • Hoogerbrugge PJ, Koelman JM (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19:155

    Article  Google Scholar 

  • Huang J, Wang Y, Laradji M (2006) Flow control by smart nanofluidic channels: a dissipative particle dynamics simulation. Macromolecules 39:5546

    Article  Google Scholar 

  • Ibergay C, Malfreyt P, Tildesley DJ (2010) Mesoscale modeling of polyelectrolyte brushes with salt. J Phys Chem B 114:7274

    Article  Google Scholar 

  • Ibergay C, Tildesley PMDJ (2011) Interaction between two polyelectrolyte brushes: a mesoscale modelling of the compression. Soft Matter 7:4900

    Article  Google Scholar 

  • Ilnytskyi JM, Patsahan T, Sokoowski S (2011) Nanostructures in a binary mixture confined in slit-like pores with walls decorated with tethered polymer brushes in the form of stripes: dissipative particle dynamics study. J Chem Phys 134:204903

    Article  Google Scholar 

  • Irfachsyad D, Tildesley D, Malfreyt P (2002) Dissipative particle dynamics simulation of grafted polymer brushes under shear. Phys Chem Chem Phys 4:3008

    Article  Google Scholar 

  • Karniadakis G, Beskok A, Aluru N (2005) Microflows and nanoflows fundamentals and simulation. Springer Science+Business Media, Inc., Berlin

    MATH  Google Scholar 

  • Koelman JM, Hoogerbrugge PJ (1993) Dynamic simulation of hard-sphere suspensions under steady shear. Europhys Lett 21:363

    Article  Google Scholar 

  • Lei H, Fedosov DA, Karniadakis GE (2011) Time-dependent and outflow boundary conditions for dissipative particle dynamics. J Comput Phys 230:3765

    Article  MATH  MathSciNet  Google Scholar 

  • Li N, Zuo C, Cao Q (2012) Nanopores with solvent-sensitive polymer brushes: a dissipative particle dynamics simulation. J Macromol Sci B Phys 51(2):275

    Article  Google Scholar 

  • Li Y, Guo Y, Bao M, Gao X (2011) Investigation of interfacial and structural properties of CTAB at the oil/water interface using dissipative particle dynamics simulations. J Colloid Interface Sci 361:573

    Article  Google Scholar 

  • Li Z, Li Y, Wang Y, Sun Z, An L (2010) Transport of star-branched polymers in nanoscale pipe channels simulated with dissipative particle dynamics simulation. Macromolecules 43:5896

    Article  Google Scholar 

  • Malfreyt P, Tildesley DJ (2000) Dissipative particle dynamics simulations of grafted polymer chains between two walls. Langmuir 16:4732

    Article  Google Scholar 

  • Millan JA, Jiang W, Laradji M, Wang Y (2007) Pressure driven flow of polymer solutions in nanoscale slit pores. J Chem Phys 126:124905

    Article  Google Scholar 

  • Ortiz V, Nielsen SO, Discher DE, Klein ML, Lipowsky R, Shillcock J (2005) Dissipative particle dynamics simulations of polymersomes. J Chem Phys 109:17708

    Article  Google Scholar 

  • Pastorino C, Binder K, Muller M (2009) Coarse-grained description of a brush-melt interface in equilibrium and under flow. Macromolecules 42:401

    Article  Google Scholar 

  • Pivkin IV, Karniadakis GE (2005) A new method to impose no-slip boundary conditions in dissipative particle dynamics. J Comput Phys 207:114

    Article  MATH  MathSciNet  Google Scholar 

  • Pivkin IV, Karniadakis GE (2006) Coarse-graining limits in open and wall-bounded dissipative particle dynamics systems. J Chem Phys 124:184101

    Article  Google Scholar 

  • Pivkin IV, Karniadakis GE (2006) Controlling density fluctuations inwall-bounded dissipative particle dynamics systems. Phys Rev Lett 96:206001

    Article  Google Scholar 

  • Qiao R, He P (2007) Modulation of electroosmotic flow by neutral polymers. Langmuir 23:5810

    Article  Google Scholar 

  • Ranjith SK, Patnaik B, Vedantam S (2013) No-slip boundary condition in finite-size dissipative particle dynamics. J Comput Phys 232:174

    Article  MathSciNet  Google Scholar 

  • Revenga M, Zuniga I, Espanol P (1999) Boundary conditions in dissipative particle dynamics. Comput Phys Commun 121:309

    Article  Google Scholar 

  • Schlijper AG, Hoogerbrugge PJ, Manke CW (1995) Computer simulation of dilute polymer solutions with the dissipative particle dynamics method. J Rheol 39:567

    Article  Google Scholar 

  • Shillcock JC, Lipowsky R (2002) Equilibrium structure and lateral stress distribution of amphiphilic bilayers from dissipative particle dynamics simulations. J Chem Phys 117:5048

    Article  Google Scholar 

  • Smiatek J, Allen M, Schmid F (2008) Tunable-slip boundaries for coarse-grained simulations of fluid flow. Eur Phys J E 26:115

    Article  Google Scholar 

  • Tessier F, Slater GW (2006) Modulation of electroosmotic flow strength with end-grafted polymer chains. Macromolecules 39:1250

    Article  Google Scholar 

  • Visser D, Hoefsloot H, Iedema P (2005) Comprehensive boundary method for solid walls in dissipative particle dynamics. J Comput Phys 205:626

    Article  MATH  Google Scholar 

  • Willemsen SM, Hoefsloot HC, Iedema PD (2000) No-slip boundary condition in dissipative particle dynamics. Int J Mod Phys 11:881

    Google Scholar 

  • Zhu Y, Granick S (2001) Rate-dependent slip of Newtonian liquid at smooth surfaces. Phys Rev Lett 87(9):096105

    Article  Google Scholar 

  • Zhu Y, Granick S (2002) Limits of the hydrodynamic no-slip boundary condition. Phys Rev Lett 88(10):106102

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Said Saidi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehboudi, A., Saidi, M.S. Physically based wall boundary condition for dissipative particle dynamics. Microfluid Nanofluid 17, 181–198 (2014). https://doi.org/10.1007/s10404-013-1285-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-013-1285-7

Keywords

Navigation