A general condition for spontaneous capillary flow in uniform cross-section microchannels

Abstract

Spontaneous capillary flow (SCF) is a powerful method for moving fluids at the microscale. In modern biotechnology, composite channels—sometimes open—are increasingly used. The ability to predict the occurrence of a SCF is a necessity. In this work, using the Gibbs free energy, we derive a general condition for the establishment of SCF in any composite microchannel of constant cross section, i.e., a microchannel comprising different wall materials and even open parts. It is shown that SCF occurs when the Cassie angle is smaller than π/2 (θ* < π/2). For a homogeneous confined channel, this relation collapses to the well-known hydrophilic contact angle θ < π/2.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Berthier J, Brakke K (2012) The physics of microdrops. Scrivener-Wiley publishing. doi:10.1002/9781118401323

  2. Berthier E, Theberge A Casavant B, Chunjun Guo Wang C, Beebe D, Keller N (2012) Suspended microfluidics: an open and user-friendly technology platform for high-throughput metabolic studies, Proceedings of the 2012 MicroTas Conference, Okinawa, Japan, October 28-November 1, 2012

  3. Brakke K (1992) The surface evolver. Exp Math 1(2):141–165

    Article  MATH  MathSciNet  Google Scholar 

  4. Bruus H (2007) Theoretical microfluidics. Oxford University Press, Oxford

    Google Scholar 

  5. Casavant BP, Berthier E, Theberge AB, Berthier J, Montanez-Sauri SI, Bishel LL, Brakke KA, Hedman CJ, Bushman W, Keller NP, Beebe DJ (2013) Suspended microfluidics. PNAS 110(25):10111–10116

    Article  Google Scholar 

  6. Chen Y, Melvin LS, Rodriguez S, Bell D, Weislogel MM (2009) Capillary driven flow in microscale surface structures. Microelectron Eng 86:1317–1320

    Article  Google Scholar 

  7. Gibbs JW (1873) A method of geometrical representation of the thermodynamic properties of substances by means of surfaces. Trans Conn Acad Arts Sci 2:382–404

    Google Scholar 

  8. Juncker D (2002) Capillary microfluidic systems for bio/chemistry, PhD thesis at the University of Neuchatel, Switzerland, May 8, 2002

  9. Kitron-Belinkov M, Marmur A, Trabold T, Dadheech GV (2007) Groovy-drops: effect of groove curvature on spontaneous capillary flow. Langmuir 23:8406–8410

    Google Scholar 

  10. Pouteau P, Berthier J, Poher V, Dispositif de prélèvement d’un échantillon de liquide par capillarité et procédé d’analyse associé. French Patent, March 7, 2013, n° 13 52050

  11. Satoh W, Hosono H, Suzuki H (2005) On-chip microfluidic transport and mixing using electrowetting and incorporation of sensing functions. Anal Chem 77:6857–6863

    Article  Google Scholar 

  12. Zimmerman M, Schmid H, Hunziker P, Delamarche E (2007) Capillary pumps for autonomous capillary systems. Lab Chip 7:119–125

    Article  Google Scholar 

  13. Zimmerman M, Hunziker P, Delamarche E (2008) Valves for autonomous capillary systems. Microfluid Nanofluidics 5(3):395–402

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jean Berthier.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Berthier, J., Brakke, K.A. & Berthier, E. A general condition for spontaneous capillary flow in uniform cross-section microchannels. Microfluid Nanofluid 16, 779–785 (2014). https://doi.org/10.1007/s10404-013-1270-1

Download citation

Keywords

  • SCF (spontaneous capillary flow)
  • Gibbs thermodynamic equation
  • Cassie law