Skip to main content
Log in

Spin coating of hydrophilic polymeric films for enhanced centrifugal flow control by serial siphoning

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In this paper, we implement rotational flow control on a polymeric microfluidic “lab-on-a-disc” platform by combining serial siphoning and capillary valving for sequential release of a set of on-board stored liquid reagents into a common (assay) channel. The functionality of this integrated, multi-step, multi-reagent centrifugal assay platform critically depends on the capability to establish very reproducible, capillary-driven priming of the innately only weakly hydrophilic siphon microchannels made from common poly(methyl methacrylate) (PMMA) substrates. Due to the relatively high contact angle of the native PMMA substrate, it was practically impossible to ensure sequential release of on-board stored reagents using the capillary-driven serial siphon valves. In this work, we demonstrate that spin-coated hydrophilic films of poly(vinyl alcohol) (PVA) and (hydroxypropyl)methyl cellulose (HPMC) provide stable contact angles on PMMA substrates for more than 60 days. The deposited films were characterized using contact angle measurements, surface energy calculations and X-ray photoelectron spectroscopy spectra. The PVA and HPMC films reduced the water contact angle of the PMMA substrate from 68° to 22° and 27° while increasing their surface energies from 47 to 62 and 57 mN m−1, respectively. On the centrifugal microfluidic platform, the films were validated to enable the effective and reproducible priming of the serial siphon microchannels at low rotational frequencies while ensuring that the in-line capillary valves are not opened until their respective burst frequencies are passed. Furthermore, the biocompatibility of the proposed surface modification method was examined, and the platform was used to run a sandwich immunoassay for the detection of human immunoglobulin G, and its performance was proven to be comparable to dynamic coating using surfactants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bhattacharya A, Rawlins JW, Ray P (2008) Polymer grafting and crosslinking. Wiley, Hoboken

    Book  Google Scholar 

  • Carré A (2007) Polar interactions at liquid/polymer interfaces. J Adhes Sci Technol 21:961–981. doi:10.1163/156856107781393875

    Article  Google Scholar 

  • Coma V, Sebti I, Pardon P et al (2003) Film properties from crosslinking of cellulosic derivatives with a polyfunctional carboxylic acid. Carbohydr Polym 51:265–271. doi:10.1016/S0144-8617(02)00191-1

    Article  Google Scholar 

  • DeMerlis CC, Schoneker DR (2003) Review of the oral toxicity of polyvinyl alcohol (PVA). Food Chem Toxicol 41:319–326

    Article  Google Scholar 

  • Ducrée J, Haeberle S, Lutz S et al (2007) The centrifugal microfluidic bio-disk platform. J Micromech Microeng 17:S103–S115. doi:10.1088/0960-1317/17/7/S07

    Article  Google Scholar 

  • Grumann M, Brenner T, Beer C et al (2005) Visualization of flow patterning in high-speed centrifugal microfluidics. Rev Sci Instrum 76:025101. doi:10.1063/1.1834703

    Article  Google Scholar 

  • Gubala V, Gandhiraman RP, Volcke C et al (2010) Functionalization of cycloolefin polymer surfaces by plasma-enhanced chemical vapour deposition: comprehensive characterization and analysis of the contact surface and the bulk of aminosiloxane coatings. Analyst 135:1375–1381

    Article  Google Scholar 

  • Gubala V, Siegrist J, Monaghan R et al (2013) Analytica chimica acta simple approach to study biomolecule adsorption in polymeric microfluidic channels. Anal Chim Acta 760:75–82

    Article  Google Scholar 

  • Horvath J, Dolník V (2001) Polymer wall coatings for capillary electrophoresis. Electrophoresis 22:644–655. doi:10.1002/1522-2683(200102)22:4<644:AID-ELPS644>3.0.CO;2-3

    Article  Google Scholar 

  • Hozumi A, Masuda T, Hayashi K et al (2002) Spatially defined surface modification of poly(methyl methacrylate) using 172 nm vacuum ultraviolet light. Langmuir 18:9022–9027

    Article  Google Scholar 

  • Kaelble DH (1970) Dispersion-polar surface tension properties of organic solids. J Adhesion 2:66–81

    Article  Google Scholar 

  • Kitsara M, Ducrée J (2013) Integration of functional materials and surface modification for polymeric microfluidic systems. J Micromech Microeng 23:033001. doi:10.1088/0960-1317/23/3/033001

    Article  Google Scholar 

  • Krumova M, López D, Benavente R et al (2000) Effect of crosslinking on the mechanical and thermal properties of poly(vinyl alcohol). Polymer 41:9265–9272. doi:10.1016/S0032-3861(00)00287-1

    Article  Google Scholar 

  • Kurzbuch D, Bakker J, Melin J et al (2009) A biochip reader using super critical angle fluorescence. Sens Actuators B Chem 137:1–6. doi:10.1016/j.snb.2008.12.057

    Article  Google Scholar 

  • Kurzbuch D, Bakker JWP, Ruckstuhl T, Melin J (2010) Super critical angle fluorescence scanning system. U.P.T. Office (Ed.), United States

  • Louette P, Bodino F, Pireaux J–J (2005a) Poly(methyl methacrylate) (PMMA) XPS Reference Core Level and Energy Loss Spectra. Surf Sci Spectra 12:69. doi:10.1116/11.20050914

    Article  Google Scholar 

  • Louette P, Bodino F, Pireaux J–J (2005b) Poly(vinyl alcohol) (PVA) XPS reference core level and energy loss spectra. Surf Sci Spectra 12:106. doi:10.1116/11.20050922

    Article  Google Scholar 

  • Lucy CA, MacDonald AM, Gulcev MD (2008) Non-covalent capillary coatings for protein separations in capillary electrophoresis. J Chromatogr A 1184:81–105. doi:10.1016/j.chroma.2007.10.114

    Article  Google Scholar 

  • Machiste EO, Buckton G (1996) Dynamic surface tension studies of hydroxypropylmethylcellulose film-coating solutions. Int J Pharm 145:197–201

    Article  Google Scholar 

  • Matsunaga T, Ikada Y (1981) Dispersive component of surface free energy of hydrophilic polymers. J Colloid Interface Sci 84:8–13. doi:10.1016/0021-9797(81)90253-8

    Article  Google Scholar 

  • Nguyen T-P, Dupraz A (1997) Spectroscopic studies of a multiphasic polymer-ceramic mixture material. J Biomater Sci Polym Ed 8:141–149. doi:10.1163/156856296X00219

    Article  Google Scholar 

  • Nwankire CE, Dowling DP (2010) Influence of nm-thick atmospheric plasma deposited coatings on the adhesion of silicone elastomer to stainless steel. J Adhes Sci Technol 24:1291–1302. doi:10.1163/016942409X12561252292062

    Article  Google Scholar 

  • Nwankire CE, Donohoe GG, Zhang X et al (2013) At-line bioprocess monitoring by immunoassay with rotationally controlled serial siphoning and integrated supercritical angle fluorescence optics. Anal Chim Acta 781:54–62. doi:10.1016/j.aca.2013.04.016

    Article  Google Scholar 

  • Okada H, Kaji N, Tokeshi M, Baba Y (2007) Channel wall coating on a poly(methyl methacrylate) CE microchip by thermal immobilization of a cellulose derivative for size-based protein separation. Electrophoresis 28:4582–4589. doi:10.1002/elps.200700105

    Article  Google Scholar 

  • Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747. doi:10.1592/phco.30.10.1004

    Article  Google Scholar 

  • Ozaydin-Ince G, Coclite AM, Gleason KK (2012) CVD of polymeric thin films: applications in sensors, biotechnology, microelectronics/organic electronics, microfluidics, MEMS, composites and membranes. Reports on Progress in Physics 75:016501 (p 40). doi:10.1088/0034-4885/75/1/016501

  • Pavli P, Petrou PS, Douvas AM et al (2011) Selective immobilization of proteins guided by photo-patterned poly(vinyl alcohol) structures. Procedia Eng 25:292–295. doi:10.1016/j.proeng.2011.12.072

    Article  Google Scholar 

  • Pérez OE, Sánchez CC, Pilosof AMR, Rodríguez Patino JM (2008) Dynamics of adsorption of hydroxypropyl methylcellulose at the air–water interface. Food Hydrocoll 22:387–402. doi:10.1016/j.foodhyd.2006.12.005

    Article  Google Scholar 

  • Peytavi R, Raymond FR, Gagné D et al (2005) Microfluidic device for rapid (<15 min) automated microarray hybridization. Clin Chem 51:1836–1844. doi:10.1373/clinchem.2005.052845

    Article  Google Scholar 

  • Riaz A, Gandhiraman RP, Dimov IK et al (2012) Reactive deposition of nano-films in deep polymeric microcavities. Lab Chip 12:4877–4883. doi:10.1039/c2lc40296c

    Article  Google Scholar 

  • Righetti PG, Gelfi C, Verzola B, Castelletti L (2001) The state of the art of dynamic coatings. Electrophoresis 22:603–611

    Article  Google Scholar 

  • Shah JJ, Geist J, Locascio LE et al (2006) Surface modification of poly(methyl methacrylate) for improved adsorption of wall coating polymers for microchip electrophoresis. Electrophoresis 27:3788–3796. doi:10.1002/elps.200600118

    Article  Google Scholar 

  • Siegrist J, Gorkin R, Clime L et al (2009) Serial siphon valving for centrifugal microfluidic platforms. Microfluid Nanofluid 9:55–63. doi:10.1007/s10404-009-0523-5

    Article  Google Scholar 

  • Siegrist J, Donohoe G, Somers M et al (2011) A centrifugo-microfluidic cartridge with integrated detection optics towards automated at-line bioprocess monitoring of immunoglobulin G. 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences, pp 194–196

  • Steigert J, Brenner T, Grumann M et al (2007) Integrated siphon-based metering and sedimentation of whole blood on a hydrophilic lab-on-a-disk. Biomed Microdevices 9:675–679. doi:10.1007/s10544-007-9076-0

    Article  Google Scholar 

  • Strom GCRAN, Fredriksson M, Stenius PER (1987) Contact angles, work of adhesion, and interfacial tensions at a dissolving hydrocarbon surface. J Colloid Interface Sci 119:352–361

    Article  Google Scholar 

  • Ton-That C, Sharda G, Teare DOH, Bradley RH (2001) XPS and AFM surface studies of solvent-cast PS/PMMA blends. Polymer 42:1121–1129. doi:10.1016/S0032-3861(00)00448-1

    Article  Google Scholar 

  • Weikart CM, Yasuda HK (2000) Modification, degradation, and stability of polymeric surfaces treated with reactive plasmas. J Polym Sci, Part A: Polym Chem 38:3028–3042. doi:10.1002/1099-0518(20000901)38:17<3028:AID-POLA30>3.0.CO;2-B

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported partly by the FP-7 ENIAC programme CAJAL4EU, ERDF, Enterprise Ireland (Grant No. IR/2010/0002) and the Science Foundation of Ireland (Grant No. 10/CE/B1821). Authors would like to thank R. Monaghan for the PECVD APTES depositions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Kitsara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitsara, M., Nwankire, C.E., Walsh, L. et al. Spin coating of hydrophilic polymeric films for enhanced centrifugal flow control by serial siphoning. Microfluid Nanofluid 16, 691–699 (2014). https://doi.org/10.1007/s10404-013-1266-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-013-1266-x

Keywords

Navigation