Microfluidic encapsulation of cells in alginate particles via an improved internal gelation approach

Abstract

An improved internal gelation approach is developed to encapsulate single mammalian cells in monodisperse alginate microbeads as small as 26 μm in diameter and at rates of up to 1 kHz with high cell viability. The cell damage resulting from contact with calcium carbonate nanoparticles as gelation reagents is eliminated by employing a co-flow microfluidic device, and the cell exposure to low pH is minimized by a chemically balanced off-chip gelation step. These modifications significantly improve the viability of cells encapsulated in gelled alginate particles. Two different mammalian cell types are encapsulated with viability of over 84 %. The cells are functional and continue to grow inside the microparticles.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Capretto L, Mazzitelli S, Balestra C, Tosi A, Nastruzzi C (2008) Effect of the gelation process on the production of alginate microbeads by microfluidic chip technology. Lab Chip 8:617–621

    Article  Google Scholar 

  2. Chachques JC, Trainini JC, Lago N, Masoli OH, Barisani JL, Cortes-Morichetti M, Schussler O, Carpentier A (2007) Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM clinical trial): one year follow-up. Cell Transpl 16:927–934

    Article  Google Scholar 

  3. Choi C-H, Jung J-H, Rhee Y, Kim D-P, Shim S-E, Lee C-S (2007) Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Biomed Microdevices 9:855–862

    Article  Google Scholar 

  4. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351

    Article  Google Scholar 

  5. Edd JF, Di Carlo D, Humphry KJ, Koster S, Irimia D, Weitz DA, Toner M (2008) Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab Chip 8:1262–1264

    Article  Google Scholar 

  6. Guo MT, Rotem A, Heyman JA, Weitz DA (2012) Droplet microfluidics for high-throughput biological assays. Lab Chip 12:2146–2155

    Article  Google Scholar 

  7. Hoesli CA, Raghuram K, Kiang RLJ, Mocinecová D, Hu X, Johnson JD, Lacík I, Kieffer TJ, Piret JM (2011) Pancreatic cell immobilization in alginate beads produced by emulsion and internal gelation. Biotechnol Bioeng 108:424–434

    Article  Google Scholar 

  8. Holtze C, Rowat AC, Agresti JJ, Hutchison JB, Angile FE, Schmitz CHJ, Koster S, Duan H, Humphry KJ, Scanga RA, Johnson JS, Pisignano D, Weitz DA (2008) Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab Chip 8:1632–1639

    Article  Google Scholar 

  9. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    Article  Google Scholar 

  10. Maguire T, Novik E, Schloss R, Yarmush M (2006) Alginate‐PLL microencapsulation: effect on the differentiation of embryonic stem cells into hepatocytes. Biotechnol Bioeng 93:581–591

    Article  Google Scholar 

  11. Martinez CJ, Kim JW, Ye C, Ortiz I, Rowat AC, Marquez M, Weitz D (2012) A microfluidic approach to encapsulate living cells in uniform alginate hydrogel microparticles. Macromol Biosci 12:946–951

    Article  Google Scholar 

  12. Mazzitelli S, Borgatti M, Breveglieri G, Gambari R, Nastruzzi C (2011) Encapsulation of eukaryotic cells in alginate microparticles: cell signaling by TNF-alpha through capsular structure of cystic fibrosis cells. J Cell Commun Signal 5:157–165

    Article  Google Scholar 

  13. Nicodemus GD, Bryant SJ (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev 14:149–165

    Article  Google Scholar 

  14. Pierigè F, Serafini S, Rossi L, Magnani M (2008) Cell-based drug delivery. Adv Drug Deliv Rev 60:286–295

    Article  Google Scholar 

  15. Prakash S, Chang TMS (1996) Microencapsulated genetically engineered live E. coli DH5 cells administered orally to maintain normal plasma urea level in uremic rats. Nat Med 2:883–887

    Article  Google Scholar 

  16. Sakai S, Mu C, Kawabata K, Hashimoto I, Kawakami K (2006) Biocompatibility of subsieve‐size capsules versus conventional‐size microcapsules. J Biomed Mater Res A 78A:394–398

    Article  Google Scholar 

  17. Schmidt JJ, Rowley J, Kong HJ (2008) Hydrogels used for cell‐based drug delivery. J Biomed Mater Res A 87A:1113–1122

    Article  Google Scholar 

  18. Shintaku H, Kuwabara T, Kawano S, Suzuki T, Kanno I, Kotera H (2007) Micro cell encapsulation and its hydrogel-beads production using microfluidic device. Microsyst Technol 13:951–958

    Article  Google Scholar 

  19. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329

    Article  Google Scholar 

  20. Sugiura S, Oda T, Izumida Y, Aoyagi Y, Satake M, Ochiai A, Ohkohchi N, Nakajima M (2005) Size control of calcium alginate beads containing living cells using micro-nozzle array. Biomater 26:3327–3331

    Article  Google Scholar 

  21. Sun Y, Ma X, Zhou D, Vacek I, Sun AM (1996) Normalization of diabetes in spontaneously diabetic cynomolgus monkeys by xenografts of microencapsulated porcine islets without immunosuppression. J Clin Invest 98:1417–1422

    Article  Google Scholar 

  22. Tan WH, Takeuchi S (2007) Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv Mater 19:2696–2701

    Article  Google Scholar 

  23. Teh S-Y, Lin R, Hung L-H, Lee AP (2008) Droplet microfluidics. Lab Chip 8:198–220

    Article  Google Scholar 

  24. Um E, Lee D-S, Pyo H-B, Park J-K (2008) Continuous generation of hydrogel beads and encapsulation of biological materials using a microfluidic droplet-merging channel. Microfluid Nanofluid 5:541–549

    Article  Google Scholar 

  25. Workman VL, Dunnett SB, Kille P, Palmer DD (2008) On‐chip alginate microencapsulation of functional cells. Macromol Rapid Commun 29:165–170

    Article  Google Scholar 

  26. Xu Q, Hashimoto M, Dang TT, Hoare T, Kohane DS, Whitesides GM, Langer R, Anderson DG (2009) Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow‐focusing device for controlled drug delivery. Small 5:1575–1581

    Article  Google Scholar 

  27. Yu J, Du KT, Fang Q, Gu Y, Mihardja SS, Sievers RE, Wu JC, Lee RJ (2010) The use of human mesenchymal stem cells encapsulated in RGD modified alginate microspheres in the repair of myocardial infarction in the rat. Biomaterials 31:7012–7020

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. D. A. Weitz, J. Heyman, A. Khavari, S. Utech, and R. Sperling for helpful discussions. S. Akbari, acknowledges the support of Prof. H. R. Shea and Swiss national foundation (Grant No. 200020-140394).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Samin Akbari.

Additional information

Samin Akbari and Tohid Pirbodaghi have contributed equally to this article.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Akbari, S., Pirbodaghi, T. Microfluidic encapsulation of cells in alginate particles via an improved internal gelation approach. Microfluid Nanofluid 16, 773–777 (2014). https://doi.org/10.1007/s10404-013-1264-z

Download citation

Keywords

  • Single cell encapsulation
  • Alginate
  • Droplet-based microfluidics