Microfluidics and Nanofluidics

, Volume 16, Issue 4, pp 773–777 | Cite as

Microfluidic encapsulation of cells in alginate particles via an improved internal gelation approach

  • Samin AkbariEmail author
  • Tohid Pirbodaghi
Short Communication


An improved internal gelation approach is developed to encapsulate single mammalian cells in monodisperse alginate microbeads as small as 26 μm in diameter and at rates of up to 1 kHz with high cell viability. The cell damage resulting from contact with calcium carbonate nanoparticles as gelation reagents is eliminated by employing a co-flow microfluidic device, and the cell exposure to low pH is minimized by a chemically balanced off-chip gelation step. These modifications significantly improve the viability of cells encapsulated in gelled alginate particles. Two different mammalian cell types are encapsulated with viability of over 84 %. The cells are functional and continue to grow inside the microparticles.


Single cell encapsulation Alginate Droplet-based microfluidics 



The authors thank Prof. D. A. Weitz, J. Heyman, A. Khavari, S. Utech, and R. Sperling for helpful discussions. S. Akbari, acknowledges the support of Prof. H. R. Shea and Swiss national foundation (Grant No. 200020-140394).


  1. Capretto L, Mazzitelli S, Balestra C, Tosi A, Nastruzzi C (2008) Effect of the gelation process on the production of alginate microbeads by microfluidic chip technology. Lab Chip 8:617–621 CrossRefGoogle Scholar
  2. Chachques JC, Trainini JC, Lago N, Masoli OH, Barisani JL, Cortes-Morichetti M, Schussler O, Carpentier A (2007) Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM clinical trial): one year follow-up. Cell Transpl 16:927–934CrossRefGoogle Scholar
  3. Choi C-H, Jung J-H, Rhee Y, Kim D-P, Shim S-E, Lee C-S (2007) Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Biomed Microdevices 9:855–862CrossRefGoogle Scholar
  4. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351CrossRefGoogle Scholar
  5. Edd JF, Di Carlo D, Humphry KJ, Koster S, Irimia D, Weitz DA, Toner M (2008) Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab Chip 8:1262–1264CrossRefGoogle Scholar
  6. Guo MT, Rotem A, Heyman JA, Weitz DA (2012) Droplet microfluidics for high-throughput biological assays. Lab Chip 12:2146–2155CrossRefGoogle Scholar
  7. Hoesli CA, Raghuram K, Kiang RLJ, Mocinecová D, Hu X, Johnson JD, Lacík I, Kieffer TJ, Piret JM (2011) Pancreatic cell immobilization in alginate beads produced by emulsion and internal gelation. Biotechnol Bioeng 108:424–434CrossRefGoogle Scholar
  8. Holtze C, Rowat AC, Agresti JJ, Hutchison JB, Angile FE, Schmitz CHJ, Koster S, Duan H, Humphry KJ, Scanga RA, Johnson JS, Pisignano D, Weitz DA (2008) Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab Chip 8:1632–1639CrossRefGoogle Scholar
  9. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126CrossRefGoogle Scholar
  10. Maguire T, Novik E, Schloss R, Yarmush M (2006) Alginate‐PLL microencapsulation: effect on the differentiation of embryonic stem cells into hepatocytes. Biotechnol Bioeng 93:581–591CrossRefGoogle Scholar
  11. Martinez CJ, Kim JW, Ye C, Ortiz I, Rowat AC, Marquez M, Weitz D (2012) A microfluidic approach to encapsulate living cells in uniform alginate hydrogel microparticles. Macromol Biosci 12:946–951CrossRefGoogle Scholar
  12. Mazzitelli S, Borgatti M, Breveglieri G, Gambari R, Nastruzzi C (2011) Encapsulation of eukaryotic cells in alginate microparticles: cell signaling by TNF-alpha through capsular structure of cystic fibrosis cells. J Cell Commun Signal 5:157–165CrossRefGoogle Scholar
  13. Nicodemus GD, Bryant SJ (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev 14:149–165CrossRefGoogle Scholar
  14. Pierigè F, Serafini S, Rossi L, Magnani M (2008) Cell-based drug delivery. Adv Drug Deliv Rev 60:286–295CrossRefGoogle Scholar
  15. Prakash S, Chang TMS (1996) Microencapsulated genetically engineered live E. coli DH5 cells administered orally to maintain normal plasma urea level in uremic rats. Nat Med 2:883–887CrossRefGoogle Scholar
  16. Sakai S, Mu C, Kawabata K, Hashimoto I, Kawakami K (2006) Biocompatibility of subsieve‐size capsules versus conventional‐size microcapsules. J Biomed Mater Res A 78A:394–398CrossRefGoogle Scholar
  17. Schmidt JJ, Rowley J, Kong HJ (2008) Hydrogels used for cell‐based drug delivery. J Biomed Mater Res A 87A:1113–1122CrossRefGoogle Scholar
  18. Shintaku H, Kuwabara T, Kawano S, Suzuki T, Kanno I, Kotera H (2007) Micro cell encapsulation and its hydrogel-beads production using microfluidic device. Microsyst Technol 13:951–958CrossRefGoogle Scholar
  19. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329CrossRefGoogle Scholar
  20. Sugiura S, Oda T, Izumida Y, Aoyagi Y, Satake M, Ochiai A, Ohkohchi N, Nakajima M (2005) Size control of calcium alginate beads containing living cells using micro-nozzle array. Biomater 26:3327–3331CrossRefGoogle Scholar
  21. Sun Y, Ma X, Zhou D, Vacek I, Sun AM (1996) Normalization of diabetes in spontaneously diabetic cynomolgus monkeys by xenografts of microencapsulated porcine islets without immunosuppression. J Clin Invest 98:1417–1422CrossRefGoogle Scholar
  22. Tan WH, Takeuchi S (2007) Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv Mater 19:2696–2701CrossRefGoogle Scholar
  23. Teh S-Y, Lin R, Hung L-H, Lee AP (2008) Droplet microfluidics. Lab Chip 8:198–220CrossRefGoogle Scholar
  24. Um E, Lee D-S, Pyo H-B, Park J-K (2008) Continuous generation of hydrogel beads and encapsulation of biological materials using a microfluidic droplet-merging channel. Microfluid Nanofluid 5:541–549CrossRefGoogle Scholar
  25. Workman VL, Dunnett SB, Kille P, Palmer DD (2008) On‐chip alginate microencapsulation of functional cells. Macromol Rapid Commun 29:165–170CrossRefGoogle Scholar
  26. Xu Q, Hashimoto M, Dang TT, Hoare T, Kohane DS, Whitesides GM, Langer R, Anderson DG (2009) Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow‐focusing device for controlled drug delivery. Small 5:1575–1581CrossRefGoogle Scholar
  27. Yu J, Du KT, Fang Q, Gu Y, Mihardja SS, Sievers RE, Wu JC, Lee RJ (2010) The use of human mesenchymal stem cells encapsulated in RGD modified alginate microspheres in the repair of myocardial infarction in the rat. Biomaterials 31:7012–7020CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  2. 2.Graduate School for Cellular and Biomedical SciencesUniversity of BernBernSwitzerland
  3. 3.School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA

Personalised recommendations