Andoh Y, Ito T, Okazaki S (2012) An application of improved force field to fully hydrated DPPC and POPC bilayers in a tensionless NPT ensemble: a test of CHARMM 27-based new force field by Högberg et al. Mol Simul 38(5):414418. doi:10.1080/08927022.2010.548385
Article
Google Scholar
Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690. doi:10.1063/1.448118
Article
Google Scholar
Bockmann RA, Hac A, Heimburg T, Grubmuller H (2003) Effect of sodium chloride on a lipid bilayer. Biophys J 85(3):1647–1655. doi:10.1016/S0006-3495(03)74594-9
Article
Google Scholar
Brú A, Casero D (2006) The effect of pressure on the growth of tumour cell colonies. J Theor Biol 243:171–180. doi:10.1016/j.jtbi.2006.05.020
Article
Google Scholar
Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(1):014–101. doi:10.1063/1.2408420
Article
Google Scholar
Douliez JP, Leonard A, Dufourc EJ (1995) Restatement of order parameters in biomembranes—calculation of C–C bond order parameters from C–D quadrupolar splittings. Biophys J 68(5):1727–1739
Article
Google Scholar
Ewald PP (1921) Die Berechnung optischer und eletrostatischer Gitterpotentiale. Ann Phys 369(3):253–287
Article
Google Scholar
Freites JA, OConnor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD, Klauda JB, Venable RM and Pastor JW (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Chem Phys B 114:7830–7843
Article
Google Scholar
Frigo M, Johnson SG (2005) The design and implementation of FFTW3. Proc IEEE 93(2):216–231. doi:10.1109/JPROC.2004.840301
Article
Google Scholar
Ganzenmüller GC, Hiermaier S, Steinhauser MO (2011) Shock-wave induced damage in lipid bilayers: a dissipative particle dynamics simulation study. Soft Matter 7:4307–4317. doi:10.1039/C0SM01296C
Article
Google Scholar
Hess B, Kutzner C, Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447. doi:10.1021/ct700301q
Article
Google Scholar
Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31(3):1695–1697. doi:10.1103/PhysRevA.31.1695
Article
Google Scholar
Jo S, Kim T, Im W (2007) Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS ONE 2(9):e880. doi:10.1371/journal.pone.0000880
Article
Google Scholar
Klauda JB, Eldho NV, Gawrisch K, Brooks BR, Pastor RW (2008) Collective and noncollective models of NMR relaxation in lipid vesicles and multilayers. J Phys Chem J 112(19):5924–5929. doi:10.1021/jp075641w
Article
Google Scholar
Klauda JB, Venable RM, Freites JA, Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD, Pastor RW (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114(23):78307843. doi:10.1021/jp101759q
Article
Google Scholar
Kodama T, Hamblin MR, Doukas AG (2000) Cytoplasmic molecular delivery with shock waves: importance of impulse. Biophys J 79:1821–1832. doi:10.1016/S0006-3495(00)76432-0
Article
Google Scholar
Koshiyama K, Kodama T, Yano T, Fijikawa S (2006) Structural change in lipid bilayers and water penetration induced by shock waves: molecular dynamics simulations. Biophys J 91(6):2198–2205. doi:10.1529/biophysj.105.077677
Article
Google Scholar
Kucerka N, Tristram-Nagle S, Nagle JF (2006) Closer look at structure of fully hydrated fully hydrated fluid phase DPPC bilayers. Biophys J 90(11):L83L85. doi:10.1529/biophysj.106.086017
Article
Google Scholar
Kucerka N, Nagle JF, Sachs JN, Feller SE, Pencer J, Jackson A, Katsaras J (2008) Lipid bilayer structure determined by the simultaneous analysis of neutron and X-ray scattering data. Biophys J 95(5):2356–2367. doi:10.1529/biophysj.108.132662
Article
Google Scholar
Nosé S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 31(3):1695–1697. doi:10.1080/00268978400101201
Google Scholar
Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52(12):7182–7190. doi:10.1063/1.328693
Article
Google Scholar
Seelig A, Seelig J (1974) Dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. Biochemistry 13(23):4839–4845. doi:10.1021/bi00720a024
Article
Google Scholar
Seelig A, Seelig J (1975) Bilayers of dipalmitoyl-3-sn-phosphatidylcholine. Conformational differences between the fatty acyl chains. Biochim Biophys Acta 406(1). doi:10.1016/0005-2736(75)90037-1
Singer SJ, Nicholson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175(4023):720–731. doi:10.1126/science.175.4023.720
Article
Google Scholar
Sonne J, Jensen MO, Hansen FY, Hemmingsen L, Peter GH (2007) Reparametrization of all-atom dipalmitoylphosphatidylcholine lipid parameters enables simulation. Biophys J 92(12):4157–4167. doi:10.1529/biophysj.106.087130
Article
Google Scholar
Striolo A (2006) The mechanism of water diffusion in narrow carbon nanotubes. Nano Lett 6(4):633639. doi:10.1021/nl052254u
Article
Google Scholar
Tieleman DP, Berendsen HJC. (1996) Molecular dynamics simulations of a fully hydrated dipalmitoylphosphatidylcholine bilayer with different macroscopic boundary conditions and parameters. J Chem Phys 105(11):4871–4880. doi:10.1063/1.472323
Article
Google Scholar
Tieleman DP, Marrink SJ, Berendsen HJC (1997) A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim Biophys Acta 1331:235–270. doi:10.1016/S0304-4157(97)00008-7
Article
Google Scholar
Vogel A, Busch S, Parlitz U (1996) Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. J Acoust Soc Am 100(1):148–165 doi:10.1121/1.415878
Article
Google Scholar
World Health Organization (2009) World Health Statistics 2009. Number ISBN 97892 4 156381. World Health Organization
Zhao S, Germann TC, Strachan A (2006) Atomistic simulations of shock-induced alloying reactions in Ni/Al nanolaminates. J Chem Phys 125(16):164707–164714. doi:10.1063/1.2359438
Article
Google Scholar