Electroosmotic flow in nanoporous membranes in the region of electric double layer overlap

Abstract

This study investigates electroosmotic flow (EOF) with sodium tetraborate buffer in nanoporous anodized alumina membranes. Membranes with pore diameters ranging from 8 to 100 nm have been fabricated with narrow pore size distributions to systematically investigate the effect of pore diameter on the electroosmosis (EO) pumping down to the electric double layer overlap region. EOF was observed in membranes with pore diameters in and below this region, along with evidence of concentration polarization (CP), which resulted in a significant reduction in flux. The initial flux, though, could be fully recovered by temporarily reversing the flow and dislodging the accumulated ion layer from the feed side of the membrane. Stable pumping for up to 2 h was obtained before any flux reduction caused by CP was observed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Besteman K, Zevenbergen MAG, Heering HA, Lemay SG (2004) Direct observation of charge inversion by multivalent ions as a universal electrostatic phenomenon. Phys Rev Lett 93(17):170802

    Article  Google Scholar 

  2. Brask A, Kutter JP, Bruus H (2005) Long-term stable electroosmotic pump with ion exchange membranes. Lab Chip 5(7):730–738

    Article  Google Scholar 

  3. Bruus H (2007) Theoretical microfluidics (Oxford master series in physics). Oxford University Press, USA

    Google Scholar 

  4. Cao Z, Yuan L, Liu YF, Yao S, Yobas L (2012) Microchannel plate electro-osmotic pump. Microfluid Nanofluidics 13(2):279–288

    Article  Google Scholar 

  5. Cervera J, Alcaraz A, Schiedt B, Neumann R, Ramírez P (2007) Asymmetric selectivity of synthetic conical nanopores probed by reversal potential measurements. J Phys Chem C 111(33):12265–12273

    Article  Google Scholar 

  6. Chang H-C, Yeo LY (2010) Electrokinetically-driven microfluidics and nanofluidics. Cambridge University Press, USA

    Google Scholar 

  7. Chen Y-F, Li M-C, Hu Y-H, Chang W-J, Wang C-C (2008a) Low-voltage electroosmotic pumping using porous anodic alumina membranes. Microfluid Nanofluidics 5(2):235–244

    Article  Google Scholar 

  8. Chen Y, Ni Z, Wang G, Xu D, Li DY (2008b) Electroosmotic flow in nanotubes with high surface charge densities. Nano Lett 8(1):42–48

    Article  Google Scholar 

  9. Chen Y-F, Hu Y-H, Chou Y-I, Lai S-M, Wang C-C (2010) Surface modification of nano-porous anodic alumina membranes and its use in electroosmotic flow. Sensor Actuat B Chem 145(1):575–582

    Article  Google Scholar 

  10. Chuan-Hua C, Santiago JG (2002) A planar electroosmotic micropump. J Microelectromech Syst 11(6):672–683

    Article  Google Scholar 

  11. Erlandsson PG, Robinson ND (2011) Electrolysis-reducing electrodes for electrokinetic devices. Electrophoresis 32(6–7):784–790

    Article  Google Scholar 

  12. Freund JB (2002) Electro-osmosis in a nanometer-scale channel studied by atomistic simulation. J Chem Phys 116(5):2194–2200

    Article  Google Scholar 

  13. Huang K-D, Yang R-J (2007) Electrokinetic behaviour of overlapped electric double layers in nanofluidic channels. Nanotechnology 18(11):115701

    Article  Google Scholar 

  14. Hunter RJ (1981) Zeta potential in colloid science. Academic Press, London

    Google Scholar 

  15. Kemery PJ, Steehler JK, Bohn PW (1998) Electric field mediated transport in nanometer diameter channels. Langmuir 14(10):2884–2889

    Article  Google Scholar 

  16. Kwon K, Park C-W, Kim D (2012) High-flow rate, compact electroosmotic pumps with porous polymer track-etch membranes. Sens Actuators A Phys 175:108–115

    Article  Google Scholar 

  17. Lee KP, Mattia D (2013) Monolithic nanoporous alumina membranes for ultrafiltration applications: characterization, selectivity-permeability analysis and fouling studies. J Membrane Sci 435:52–61. http://dx.doi.org/10.1016/j.memsci.2013.01.051

  18. Lee KP, Leese H, Mattia D (2012) Water flow enhancement in hydrophilic nanochannels. Nanoscale 4(8):2621–2627

    Article  Google Scholar 

  19. Lillo M, Losic D (2009) Pore opening detection for controlled dissolution of barrier oxide layer and fabrication of nanoporous alumina with through-hole morphology. J Membr Sci 327(1–2):11–17

    Article  Google Scholar 

  20. Mani A, Zangle TA, Santiago JG (2009) On the propagation of concentration polarization from microchannel−nanochannel interfaces Part I: analytical model and characteristic analysis. Langmuir 25(6):3898–3908

    Article  Google Scholar 

  21. Masuda H, Fukuda K (1995) Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268(5216):1466–1468

    Article  Google Scholar 

  22. Nielsch K, Choi J, Schwirn K, Wehrspohn RB, Gosele U (2002) Self-ordering regimes of porous alumina: the 10 porosity rule. Nano Lett 2(7):677–680

    Article  Google Scholar 

  23. Prakash P, Grissom MD, Rahn CD, Zydney AL (2006) Development of an electroosmotic pump for high performance actuation. J Membr Sci 286(1–2):153–160

    Article  Google Scholar 

  24. Pu Q, Yun J, Temkin H, Liu S (2004) Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Lett 4(6):1099–1103

    Article  Google Scholar 

  25. Rice CL, Whitehead R (1965) Electrokinetic flow in a narrow cylindrical capillary. J Phys Chem 69(11):4017–4024

    Article  Google Scholar 

  26. Romero V, Vega V, García J, Prida VM, Hernando B, Benavente J (2012) Ionic transport across tailored nanoporous anodic alumina membranes. J Colloid Interface Sci 376(1):40–46

    Article  Google Scholar 

  27. Strickland DG, Suss ME, Zangle TA, Santiago JG (2010) Evidence shows concentration polarization and its propagation can be key factors determining electroosmotic pump performance. Sens Actuators B Chem 143(2):795–798

    Article  Google Scholar 

  28. Sulka GD (2008) Highly ordered anodic porous alumina formation by self-organized anodizing. In: Eftekhari A (ed) Nanostructured materials in electrochemistry, 1st edn. Wiley, Weinheim, pp 1–116

    Chapter  Google Scholar 

  29. Suss ME, Mani A, Zangle TA, Santiago JG (2011) Electroosmotic pump performance is affected by concentration polarizations of both electrodes and pump. Sens Actuators A Phys 165(2):310–315

    Article  Google Scholar 

  30. Takamura Y, Onoda H, Inokuchi H, Adachi S, Oki A, Horiike Y (2003) Low-voltage electroosmosis pump for stand-alone microfluidics devices. Electrophoresis 24(1–2):185–192

    Article  Google Scholar 

  31. Tang F, Fudouzi H, Uchikoshi T, Sakka Y (2004) Preparation of porous materials with controlled pore size and porosity. J Eur Ceram Soc 24(2):341–344

    Article  Google Scholar 

  32. Vajandar SK, Xu D, Markov DA, Wikswo JP, Hofmeister W, Li D (2007) SiO2 coated porous anodic alumina membranes for high flow rate electroosmotic pumping. Nanotechnology 18(27):275705

    Article  Google Scholar 

  33. Wright MR (1988) The nature of electrolyte solutions. Dimensions of science. Macmillan Education Ltd, London

    Google Scholar 

  34. Wu J, Gerstandt K, Majumder M, Zhan X, Hinds BJ (2011) Highly efficient electroosmotic flow through functionalized carbon nanotube membranes. Nanoscale 3(8):3321–3328

    Article  Google Scholar 

  35. Yao S, Hertzog DE, Zeng S, Mikkelsen JC Jr, Santiago JG (2003) Porous glass electroosmotic pumps: design and experiments. J Colloid Interface Sci 268(1):143–153

    Article  Google Scholar 

  36. Yao S, Myers AM, Posner JD, Rose KA, Santiago JG (2006) Electroosmotic pumps fabricated from porous silicon membranes. J Microelectromech Syst 15(3):717–728

    Article  Google Scholar 

  37. Yusko EC, An R, Mayer M (2010) Electroosmotic flow can generate ion current rectification in nano- and micropores. ACS Nano 4(1):477–487

    Article  Google Scholar 

  38. Zangle TA, Mani A, Santiago JG (2009) On the propagation of concentration polarization from microchannel−nanochannel interfaces part II: numerical and experimental study. Langmuir 25(6):3909–3916

    Article  Google Scholar 

  39. Zeng S, Chen C-H, Mikkelsen JC Jr, Santiago JG (2001) Fabrication and characterization of electroosmotic micropumps. Sens Actuators B Chem 79(2–3):107–114

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the UK EPSRC EP/6045798/1 grant for funding. DM is supported by a UK Royal Academy of Engineering Research Fellowship. The authors acknowledge John Bishop for his electronics expertise and support and the Microscopy and Analysis Suite at the University of Bath.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Davide Mattia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11535 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Leese, H., Mattia, D. Electroosmotic flow in nanoporous membranes in the region of electric double layer overlap. Microfluid Nanofluid 16, 711–719 (2014). https://doi.org/10.1007/s10404-013-1255-0

Download citation

Keywords

  • Electroosmosis
  • Electric double layer
  • Electroosmotic mobility
  • Concentration polarization
  • Borate buffer