Skip to main content

Green synthesis of silver nanoparticles-based nanofluids and investigation of their antimicrobial activities

Abstract

We have proposed a facile green technique for synthesizing silver nanoparticles-based nanofluids at high temperature and pressure using low molecular weight lactulose solution, which is playing the role of a reducing as well as stabilizing agent. The particle/crystallite sizes, morphology, crystallinity of the nanoparticles are characterized using spectroscopic, microscopic, and diffraction techniques. Since the properties of nanofluids are attractive for technological applications, the investigation of their thermal and electrical conductivities is also immensely important. The material shows a significant enhancement of both thermal and electrical conductivities in comparison to the base fluid due to high surface area, enhanced Brownian motion and layering at the liquid–solid interface of the nanofluids. Moreover, these nanofluids offer excellent antimicrobial activities to different gram class bacteria.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Andersson M, Pederson JS, Palmgrist AEC (2005) Silver nanoparticle formation in microemulsions acting both as template and reducing agent. Langmuir 21:11387–11396

    Article  Google Scholar 

  2. Bankura KP, Maity D, Mollick MMR, Mondal D, Bhowmick B, Bain MK, Chakraborty A, Sarkar J, Acharya K, Chattopadhyay D (2012) Synthesis, characterization and antimicrobial activity of dextran stabilized silver nanoparticles in aqueous medium. Carbohydr Polym 89:1159–1165

    Article  Google Scholar 

  3. Bhattacharya P, Saha SK, Yadav A, Phelan PE, Prasher RS (2004) Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids. J Appl Phys 95:6492–6494

    Article  Google Scholar 

  4. Bosetti M, Masse A, Tobin E, Cannas M (2002) Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. Biomaterials 23:887–892

    Article  Google Scholar 

  5. Cameron DS (2009) Chemistry, electrochemistry, and electrochemical applications: Silver. In: Garche J, Dyer CK, Moseley PT, Oguni Z, Rand DAJ, Scrosati B (eds) Encyclopedia of electrochemical power sources. Elsevier, Amsterdam, pp 876–882

    Chapter  Google Scholar 

  6. Crooks RM, Lemon BI, Sun L, Yeung LK, Zhao M (2000) Dendrimer-encapsulated metals and semiconductors: synthesis, characterization, and applications. Top Curr Chem 212:81–135

    Article  Google Scholar 

  7. Eastman JA, Phillpot SR, Choi SUS, Keblinski P (2004) Thermal transport in nanofluids. Annu Rev Mater Res 34:219–246

    Article  Google Scholar 

  8. Evans W, Fish J, Keblinski P (2006) Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl Phys Lett 88:093116-3

    Google Scholar 

  9. Frederix F, Friedt JM, Choi KH, Laureyn W, Campitelli A, Mondelaers D, Maes G, Borghs G (2003) Biosensing based on light absorption of nanoscaled gold and silver particles. Anal Chem 75:6894–6900

    Article  Google Scholar 

  10. Fuentes RG, Rojas JAP, Jiménez-Pérez JL, Sanchez Ramirez JF, Cruz-Orea A, Mendoza-Alvarez JG (2008) Study of thermal diffusivity of nanofluids with bimetallic nanoparticles with Au(core)/Ag(shell) structure. Appl Surf Sci 255:781–783

    Article  Google Scholar 

  11. Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19:1357–1361

    Article  Google Scholar 

  12. Hu Z, Zhang J, Chan WL, Szeto YS (2006) Suspension of silver oxide nanoparticles in chitosan solution and its antibacterial activity in cotton fabrics. Mater Res Soc Symp Proc 920:0920-S02-03(6 pages)

    Google Scholar 

  13. Jana NR, Sau TK, Pal T (1999) Growing small silver particle as redox catalyst. J Phys Chem B 103:115–121

    Article  Google Scholar 

  14. Jang SP, Choi SUS (2004) Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84:4316–4318

    Article  Google Scholar 

  15. Joerger R, Klaus T, Granqvist CG (2000) Biologically produced silver-carbon composite materials for optically functional thin-film coatings. Adv Mater 12:407–409

    Article  Google Scholar 

  16. Karpinski AP, Russell SJ, Serenyi JR, Murphy JP (2000) Silver based batteries for high power applications. J Power Sources 91:77–82

    Article  Google Scholar 

  17. Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transfer 45:855–863

    Article  MATH  Google Scholar 

  18. Koo J, Kleinstreuer C (2005) Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids. Int Commun Heat Mass 32:1111–1118

    Article  Google Scholar 

  19. Kumar DH, Patel HE, Kumar VRR, Sundararajan T, Pradeep T, Das SK (2004) Model for heat conduction in nanofluids. Phys Rev Lett 93:144301 4 pages

    Article  Google Scholar 

  20. Lactulose (2013) Medline plus drug information, Available at: www.nlm.nih.gov/medlineplus/druginfo/meds/a682338.html, Accessed on: 5 April 2013

  21. Liu YC, Lin LH (2004) New pathway for the synthesis of ultrafine silver nanoparticles from bulk silver substrates in aqueous solutions by sonoelectrochemical methods. Electrochem Commun 6:1163–1168

    Article  Google Scholar 

  22. Liu MS, Lin MCC, Tsai CY, Wang CC (2006) Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method. Int J Heat Mass Transfer 49:3028–3033

    Article  Google Scholar 

  23. Liu C, Yang X, Yuan H, Zhou Z, Xiao D (2007) Preparation of silver nanoparticle and its application to the determination of ct-DNA. Sensors 7:708–718

    Article  Google Scholar 

  24. Lo CH, Tsung TT, Chen LC, Su CH, Lin HM (2005a) Fabrication of copper oxide nanofluid using submerged arc nanoparticle synthesis system (SANSS). J Nanopart Res 7:313–320

    Article  Google Scholar 

  25. Lo CH, Tsung TT, Chen LC (2005b) Shape-controlled synthesis of Cu-based nanofluid using submerged arc nanoparticle synthesis system (SANSS). J Cryst Growth 277:636–642

    Article  Google Scholar 

  26. Lo CH, Tsung TT, Lin HM (2007) Preparation of silver nanofluid by the submerged arc nanoparticle synthesis system (SANSS). J Alloy Compd 434–435:659–662

    Article  Google Scholar 

  27. Magudapathy P, Gangopadhyay P, Panigrahi BK, Nair KGM, Dhara S (2001) Electrical transport studies of Ag nanoclusters embedded in glass matrix. Phys B 299:142–146

    Article  Google Scholar 

  28. Maity D, Bain MK, Bhowmick B, Sarkar J, Saha S, Acharya K, Chakraborty M, Chattopadhyay D (2011) In situ synthesis, characterization, and antimicrobial activity of silver nanoparticles using water soluble polymer. J Appl Polym Sci 122:2189–2196

    Article  Google Scholar 

  29. Mishra A, Ram S, Ghosh G (2009) Dynamic light scattering and optical absorption in biological nanofluids of gold nanoparticles in poly(vinyl pyrrolidone) molecules. J Phys Chem C 113:6976–6982

    Article  Google Scholar 

  30. Mollick MMR, Bhowmick B, Maity D, Mondal D, Bain MK, Bankura K, Sarkar J, Rana D, Acharya K, Chattopadhyay D (2012) Green synthesis of silver nanoparticles using Paederia foetida L. leaf extract and assessment of their antimicrobial activities. Int J Green Nanotechnol 4:230–239

    Article  Google Scholar 

  31. Patel HE, Das SK, Sundararajan T, Nair AS, George B, Pradeep T (2003) Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects. Appl Phys Lett 83:2931–2933

    Article  Google Scholar 

  32. Patel HE, Sundararajan T, Das SK (2008) A cell model approach for thermal conductivity of Nanofluids. J Nanopart Res 10:87–97

    Article  Google Scholar 

  33. Patil DH, Westaby D, Mahida YR, Palmer KR, Rees R, Clark ML, Dawson AM, Silk DBA (1987) Comparative modes of action of lactitol and lactulose in the treatment of hepatic encephalopathy. Guit 28:255–259

    Article  Google Scholar 

  34. Paul G, Sarkar S, Pal T, Das PK, Manna I (2012) Concentration and size dependence of nano-silver dispersed water based nanofluids. J Colloid Interface Sci 371:20–27

    Article  Google Scholar 

  35. Petit C, Lixon P, Pileni MP (1993) In situ synthesis of silver nanocluster in AOT reverse micelles. J Phys Chem 97:12974–12983

    Article  Google Scholar 

  36. Prasher R (2005) Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett 94:025901 4 pages

    Article  Google Scholar 

  37. Prasher R, Bhattacharya P, Phelan PE (2006) Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids. J Heat Transfer 128:588–595

    Article  Google Scholar 

  38. Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125:13940–13941

    Article  Google Scholar 

  39. Sandmann G, Dietz H, Plieth W (2000) Preparation of silver nanoparticles on ITO surfaces by a double-pulse method. J Electroanal Chem 491:78–86

    Article  Google Scholar 

  40. Saraidarov T, Levchenko V, Reisfeld R (2010) Synthesis of silver nanoparticles and their stabilization in different sol-gel matrices: optical and structural characterization. Phys Status Solidi C 7:2648–2651

    Article  Google Scholar 

  41. Sarkar J, Saha S, Chattopadhyay D, Patra S, Acharya K (2011) Mycosynthesis of silver nanoparticles and investigation of their antimicrobial activity. J NanoSci NanoEng Appl 1:17–26

    Google Scholar 

  42. Sastry M, Mayya KS, Patil V, Paranjape DV, Hegde SG (1997) Langmuir-Blodgett films of carboxylic acid derivatized silver colloidal particles: role of subphase pH on degree of cluster incorporation. J Phys Chem B 101:4954–4958

    Article  Google Scholar 

  43. Sastry M, Patil V, Sainkar SR (1998) Electrostatically controlled diffusion of carboxylic acid derivatized silver colloidal particles in thermally evaporated fatty amine films. J Phys Chem B 102:1404–1410

    Article  Google Scholar 

  44. Shukla RK, Dhir VK (2008) Effect of Brownian motion on thermal conductivity of nanofluids. J Heat Transfer 130:042406 13 pages

    Article  Google Scholar 

  45. Solanki JN, Murthy ZVP (2011) Preparation of silver nanofluids with high electrical conductivity. J Dispersion Sci Technol 32:724–730

    Article  Google Scholar 

  46. Tamjid E, Guenther BH (2010) Rheology and colloidal structure of silver nanoparticles dispersed in diethylene glycol. Powder Technol 197:49–53

    Article  Google Scholar 

  47. Tan Y, Wang Y, Jiang L, Zhu D (2002) Thiosalicylic acid-functionalized silver nanoparticles synthesized in one-phase system. J Colloid Interface Sci 249:336–345

    Article  Google Scholar 

  48. Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 408:999–1006

    Article  Google Scholar 

  49. Vorobyova SA, Lesnikovich AI, Sobal NS (1999) Preparation of silver nanoparticles by interphase reduction. Colloids Surf A 152:375–379

    Article  Google Scholar 

  50. Wang H, Qiao X, Chen J, Ding S (2005) Preparation of silver nanoparticles by chemical reduction method. Colloids Surf A 256:111–115

    Article  Google Scholar 

  51. Wu S, Meng S (2005) Preparation of ultrafine silver powder using ascorbic acid as reducing agent and its application in MLCI. Mater Chem Phys 89:423–427

    Article  Google Scholar 

  52. Yu DG (2007) Formation of colloidal silver nanoparticles stabilized by Na+-poly(γ-glutamic acid)-silver nitrate complex via chemical reduction process. Colloids Surf B 59:171–178

    Article  Google Scholar 

  53. Zhang X, Gu H, Fujii M (2006) Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. J Appl Phys 100:044325

    Article  Google Scholar 

  54. Zhu HT, Zhang CY, Tang YM, Wang JX (2007) Novel synthesis and thermal conductivity of CuO Nanofluid. J Phys Chem C 111:1646–1650

    Article  Google Scholar 

Download references

Acknowledgments

The author Md. M. R. Mollick gratefully acknowledge DST, Government of India for providing fellowship under INSPIRE fellowship. D. Maity likes to thank UGC, Government of India for her fellowship. B. Bhowmick wishes to thank the Centre for Nanoscience and Nanotechnology, University of Calcutta, and D. Mondal thanks CSIR, New Delhi for his fellowship. We acknowledge Prof. P. K. Das and G. Paul, Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, India, for thermal conductivity measurement.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dipankar Chattopadhyay.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mollick, M.M.R., Bhowmick, B., Maity, D. et al. Green synthesis of silver nanoparticles-based nanofluids and investigation of their antimicrobial activities. Microfluid Nanofluid 16, 541–551 (2014). https://doi.org/10.1007/s10404-013-1252-3

Download citation

Keywords

  • Green synthesis
  • Lactulose
  • Silver nanoparticles
  • Nanofluids
  • Conductivity
  • Antimicrobial activity