Advertisement

Microfluidics and Nanofluidics

, Volume 16, Issue 3, pp 465–471 | Cite as

Cross-flow microfilters with large-diameter sacrificially etched cross-sections

  • Sara A. Ehlert
  • Nathan Ives
  • Aaron R. Hawkins
Research Paper

Abstract

Cross-flow microfilters were constructed on silicon substrates using photolithography, chemical vapor deposition, and sacrificial etching. These devices consist of an array of channels with arch-shaped cross-sections approximately 50 μm tall and 140 μm wide. Pores, 5 μm in diameter, were etched through channel walls with a high packing density. The microfilters were analyzed by imaging permeate and retentate solutions down the length of the channels to determine percentages of fluorescent microbeads (diameters of 2.2 and 15.5 μm) filtered per length. A simple model using principles of Brownian motion and Monte Carlo simulation closely predicts filtration performance.

Keywords

Microfabrication Cross-flow filtration Lab-on-a-chip Sacrificial etching 

Notes

Acknowledgments

We wish to acknowledge the following for assistance in device fabrication and data gathering: Brigham Young University’s Integrated Microfabrication Laboratory and Jie Xuan. Financial support was provided by the Ira A. Fulton College of Engineering and the Micron Foundation.

References

  1. Barber J, Lunt E, George Z, Yin D, Schmidt H, Hawkins A (2006) Integrated hollow waveguides with arch-shaped cores. IEEE Photonics Technol Lett 18:28–30. doi: 10.1109/LPT.2005.859990 CrossRefGoogle Scholar
  2. Borchardt MA, Spencer SK (2002) Concentration of Cryptosporidium, microsporidia and other water-borne pathogens by continuous separation channel centrifugation. J Appl Microbiol 92:649–656. doi: 10.1046/j.1365-2672.2002.01570.x CrossRefGoogle Scholar
  3. Cai B, Deitch EA, Ulloa L (2010) Novel Insights for systemic inflammation in sepsis and hemorrhage. Mediators Inflamm. doi: 10.1155/2010/642462 Google Scholar
  4. Crowley TA, Vincent P (2005) Isolation of plasma from whole blood using planar microfilters for lab-on-a-chip applications. Lab Chip 5:922–929. doi: 10.1039/B502930A CrossRefGoogle Scholar
  5. Dickson MN, Amar L, Hill M, Schwartz J, Leonard EF (2012) A scalable, micropore, platelet rich plasma separation device. Biomed Microdevices 6:1095–1102. doi: 10.1007/s10544-012-9675-2 CrossRefGoogle Scholar
  6. Gangadharan S, Kusnetsov AV, Zhu H, Hinestroza J, Jasper WJ (2012) Modeling of cross-flow across an electrostatically charged monolith filter. Part Sci Technol 30:461–473. doi: 10.1080/02726351.2011.604394 CrossRefGoogle Scholar
  7. Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7:1094–1110. doi: 10.1039/B706364B CrossRefGoogle Scholar
  8. Jiang H, Weng X, Li D (2011) Microfluidic whole-blood immunoassays. Microflud Nanofluid 10:941–964CrossRefGoogle Scholar
  9. Kim M, Zydney AL (2006) Theoretical analysis of particle trajectories and sieving in a 2-dimensional cross-flow filtration system. J Membr Sci 281:666–675. doi: 10.1016/j.memsci.2006.04.037 CrossRefGoogle Scholar
  10. Liu Y, Yu J, Du M, Wang W, Zhang W, Wang Z, Jiang X (2012) Accelerating microfluidic immunoassays on filter membranes by applying vacuum. Biomed Microdevices 14:17–23CrossRefGoogle Scholar
  11. Lunt E, Wu B, Keeley J, Measor P, Schmidt H, Hawkins A (2010) Hollow ARROW waveguides on self-aligned pedestals for improved geometry and transmission. IEEE Photonics Technol Lett 22:1147–1149. doi: 10.1109/LPT.2010.2051145 CrossRefGoogle Scholar
  12. Mark D, Haeberle S, Roth G, Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39:1153–1182. doi: 10.1039/B820557B CrossRefGoogle Scholar
  13. Peskoller C, Niessner R, Seidel M (2009) Cross-flow microfiltration system for rapid enrichment of bacteria in water. Anal Bioanal Chem 393:399–404CrossRefGoogle Scholar
  14. Reynolds DT, Slade RB, Sykes NJ, Jonas A, Fricker CR (1999) Detection of Cryptosporidium oocytes in water: techniques for generating precise recovery data. J Appl Microbiol 87:804–813CrossRefGoogle Scholar
  15. Richardson J, Coulson J, Harker J, Backhurst J (2002) Coulson and Richardson’s chemical engineering, 5th edn. Butterworth-Heinemann, OxfordGoogle Scholar
  16. Roh S, Shin H, Kim S (2006) Backflushing, pulsation and inline flocculation techniques for flux improvement in crossflow microfiltration. Korean J Chem Eng 23:391–398CrossRefGoogle Scholar
  17. Sun X, Peeni BA, Yang W, Becerril HA, Woolley AT (2007) Rapid prototyping of poly(methyl methacrylate) microfluidic systems using solvent imprinting and bonding. J Chromatogr A 1162:162–166. doi: 10.1016/j.chroma.2007.04.002 CrossRefGoogle Scholar
  18. van Ruler O, Schultz MJ, Reitsma JB, Gouma DJ, Boermeester MA (2009) Has mortality from sepsis improved and what to expect from new treatment modalities: review of current insight. Surg Infect (Larchmt) 10:339–348. doi: 10.1089/sur.2008.012 CrossRefGoogle Scholar
  19. Warkiani ME, Lou C, Liu H, Gong H (2012) A high-flux isopore micro-fabricated membrane for effective concentration and recovering of waterborne pathogens. Biomed Microdevices 14:669–677CrossRefGoogle Scholar
  20. Xuan J, Hamblin M, Stout J, Tolley H, Maynes R, Woolley A, Hawkins A, Lee M (2011) Surfactant addition and alternating current electrophoretic oscillation during size fractionation of nanoparticles in channels with two or three different height segments. J Chromatogr A 1218:9102–9110. doi: 10.1016/j.chroma.2011.10.005 CrossRefGoogle Scholar
  21. Yang S, Undar A, Zahn JD (2006) A microfluidic device for continuous, real time blood plasma separation. Lab Chip 6:871–880. doi: 10.1039/B516401J CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sara A. Ehlert
    • 1
  • Nathan Ives
    • 1
  • Aaron R. Hawkins
    • 1
  1. 1.Electrical and Computer Engineering DepartmentBrigham Young UniversityProvoUSA

Personalised recommendations