Microfluidics and Nanofluidics

, Volume 16, Issue 1–2, pp 91–99 | Cite as

High-speed counting and sizing of cells in an impedance flow microcytometer with compact electronic instrumentation

  • Oscar Castillo-FernandezEmail author
  • Romen Rodriguez-Trujillo
  • Gabriel Gomila
  • Josep Samitier
Research Paper


Here we describe a high-throughput impedance flow cytometer on a chip. This device was built using compact and inexpensive electronic instrumentation. The system was used to count and size a mixed cell sample containing red blood cells and white blood cells. It demonstrated a counting capacity of up to ~500 counts/s and was validated through a synchronised high-speed optical detection system. In addition, the device showed excellent discrimination performance under high-throughput conditions.


Microcytometry Microfluidics Impedance Electronics Red blood cells (RBCs) White blood cells (WBCs) 



This study was funded by the ISCIII through the FIS project PI071162 and the Science Support Program of the Fundación Botín. R.R-T acknowledges funding from EU FP6 Marie Curie program CELLCHECK (035854-1). We kindly acknowledge Drs. Alfred Cortés and Francesc Miro from the Gene Translation laboratory of the Institute for Research in Biomedicine (IRB Barcelona) for their help and for providing the cell populations used in these experiments. The authors also thank Mohammad Ajine for MATLAB software development and Miquel Garrido for implementation of the electronic system. The lab-on-a-chip was fabricated in the Nanotechnology Platform of the Institute for Bioengeneering of Catalonia (IBEC).


  1. Ayliffe HE, Frazier AB, Rabbitt RD (1999) Electric impedance spectroscopy using microchannels with integrated metal electrodes. J Microelectromech Syst 8(1):50–57CrossRefGoogle Scholar
  2. Benazzi G, Holmes D, Sun T, Mowlem MC, Morgan H (2007) Discrimination and analysis of phytoplankton using a microfluidic cytometer. IET Nanobiotechnol 1(6):94–101CrossRefGoogle Scholar
  3. Berthier J, Silberzan P (2005) Microfluidics for Biotechnology, vol 1. Artech House Publishers, Boston, Microfluidics for BiotechnologyGoogle Scholar
  4. Cheung K, Gawad S, Renaud P (2005) Impedance spectroscopy flow cytometry: on-chip label-free cell differentiation. Cytometry A 65A(2):124–132CrossRefGoogle Scholar
  5. Gawad S, Schild L, Renaud P (2001) Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing. Lab Chip 1(1):76–82CrossRefGoogle Scholar
  6. Gawad S, Cheung K, Seger U, Bertsch A, Renaud P (2004) Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations. Lab Chip 4(3):241–251CrossRefGoogle Scholar
  7. Holmes D, She JK, Roach PL, Morgan H (2007) Bead-based immunoassays using a micro-chip flow cytometer. Lab Chip 7(8):1048–1056CrossRefGoogle Scholar
  8. Holmes D, Pettigrew D, Reccius CH, Gwyer JD, CV Berkel, Holloway J, Davies DE, Morgan H (2009) Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry. Lab Chip 9(20):2881–2889CrossRefGoogle Scholar
  9. Huh D, Gu W, Kamotani Y, Grotberg JB, Takayama S (2005) Microfluidics for flow cytometric analysis of cells and particles. Physiol Meas 26(3):R73–R98CrossRefGoogle Scholar
  10. Morgan H, Holmes D, Green NG (2006) High speed simultaneous single particle impedance and fluorescence analysis on a chip. Curr Appl Phys 6(3):367–370CrossRefGoogle Scholar
  11. Nieuwenhuis JH, Kohl F, Bastemeijer J, Sarro PM, Vellekoop MJ (2004) Integrated coulter counter based on 2-dimensional liquid aperture control. Sens Actuators B Chem 102(1):44–50CrossRefGoogle Scholar
  12. Rodriguez-Trujillo R, Castillo-Fernandez O, Garrido M, Arundell M, Valencia A, Gomila G (2008) High-speed particle detection in a micro-coulter counter with two-dimensional adjustable aperture. Biosens Bioelectron 24(2):290–296CrossRefGoogle Scholar
  13. Shapiro HM (1995) Practical flow cytometry, vol 3. Wiley, New YorkGoogle Scholar
  14. Sohn LL, Saleh OA, Facer GR, Beavis AJ, Allan RS, Notterman DA (2000) Capacitance cytometry: measuring biological cells one by one. Proc Natl Acad Sci USA 97(20):10687–10690CrossRefGoogle Scholar
  15. Sun T, Morgan H (2010) Single-cell microfluidic impedance cytometry: a review. Microfluid Nanofluidics 8(4):423–443. doi: 10.1007/s10404-010-0580-9 CrossRefGoogle Scholar
  16. Zhang H, Chon C, Pan X, Li D (2009) Methods for counting particles in microfluidic applications. Microfluid Nanofluidics 7(6):739–749CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Oscar Castillo-Fernandez
    • 1
    • 2
    • 3
    Email author
  • Romen Rodriguez-Trujillo
    • 4
  • Gabriel Gomila
    • 3
    • 5
  • Josep Samitier
    • 1
    • 2
    • 3
  1. 1.Nanobioengineering GroupInstitute for Bioengineering of Catalonia (IBEC)BarcelonaSpain
  2. 2.Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)ZaragozaSpain
  3. 3.Department of ElectronicsUniversity of BarcelonaBarcelonaSpain
  4. 4.Department of Micro- and Nanotechnology, DTU NanotechTechnical University of DenmarkKgs. LyngbyDenmark
  5. 5.Nanobioelectricity GroupInstitute for Bioengineering of Catalonia (IBEC)BarcelonaSpain

Personalised recommendations