Skip to main content

Numerical simulation of the collision of two microdroplets with a pseudopotential multiple-relaxation-time lattice Boltzmann model

Abstract

Collisions of two equally sized liquid microdroplets in gaseous phase are numerically studied by the lattice Boltzmann method (LBM). The multiphase formulation adopted is a pseudopotential model with improved treatment of the equation of state and force incorporation which is then coupled with the multiple-relaxation-time scheme. That allows a detailed investigation into microdroplet collisions characterized by high-density ratios as well as by relevant inertial effects. Simulations related to a wide range of flow parameters (e.g. Weber and Reynolds numbers) are reported, in order to embrace all the collisional regimes presented in previous experimental studies. From surface tension-driven coalescence (both inertial and viscous coalescence have been examined) to catastrophic break-up with the formation of children microdroplets, the simulations demonstrate that the LBM correctly reproduces the collision dynamics and the final outcomes in almost all the regimes. Different break-up mechanisms like end-pinching and capillary wave-induced break-up have been observed. Finally, the initial stages of the inertia-dominated head-on collision process have been studied, showing once more the effectiveness and reliability of this multiphase LBM implementation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

References

  1. Aarts DGAL, Lekkerkerker HNW, Guo H, Wegdam GH, Bonn D (2005) Hydrodynamics of droplet coalescence. Phys Rev Lett 95:164503

    Article  Google Scholar 

  2. Adam J, Lindblad N, Hendricks C (1968) The collision, coalescence and disruption of water droplets. J Appl Phys 39(1):5173–5180

    Article  Google Scholar 

  3. Ashgriz N, Poo Y (1990) Coalescence and separation in binary collisions of liquid drops. J Fluid Mech 221:183–204

    Article  Google Scholar 

  4. Baroud CN, Gallaireb F, Danglaa R (2010) Dynamics of microfluidic droplets. Lab Chip 10:2032–2045

    Article  Google Scholar 

  5. Brazier-Smith PR, Jennings SG, Latham J (1972) The interaction of falling water drops: coalescence. Proc R Soc Lond A 326(1566):393–408

    Article  Google Scholar 

  6. Brenn G, Kolobaric V (2006) Satellite droplet formation by unstable binary drop collision. Phys Fluids 18:087101

    Google Scholar 

  7. Brenn G, Valkovska D, Danov KD (2001) The formation of satellite droplets by unstable binary drop collision. Phys Fluids 13:2463

    Google Scholar 

  8. Carnahan NF, Starling KE (1969) Equation of state for nonattracting rigid spheres. J Chem Phys 51:635

    Google Scholar 

  9. Chang Q, Alexander JID (2006) Analysis of single droplet dynamics on striped surface domains using a lattice Boltzmann method. Microfluid Nanofluid 2(4):309–326

    Article  Google Scholar 

  10. Chen S, Doolen G (1998) Lattice Boltzmann model for fluid dynamics. Annu Rev Fluid Mech 30:329–364

    Article  MathSciNet  Google Scholar 

  11. Curran K, Colin S, Baldas L, Davies M (2005) Liquid bridge instability applied to microfluidics. Microfluid Nanofluid 1:336–345

    Article  Google Scholar 

  12. D’Humieres D, Guinzburg I, Krafczyk M, Lallemand P, Luo L (2002) Multiple relaxation time lattice Boltzmann models in three dimensions. Phil Trans R Soc Lond A 360:437–451

    Article  MATH  Google Scholar 

  13. Duchemin L, Eggers J, Josserand C (2003) Inviscid coalescence of drops. J Fluid Mech 487:167–178

    Google Scholar 

  14. Eggers J, Lister J, Stone HA (1999) Coalescence of liquid drops. J Fluid Mech 401:293–310

    Article  MATH  MathSciNet  Google Scholar 

  15. Estrade JP, Carentz H, Lavergne G, Biscos Y (1999) Experimental investigation of dynamic binary collision of ethanol droplets-a model for droplet coalescence and bouncing. J Heat Fluid Flow 20:486–491

    Article  Google Scholar 

  16. Fei K, Chen WH, Hong CW (2008) Microfluidic analysis of co2 bubble dynamics using thermal lattice-boltzmann method. Microfluid Nanofluid 5(1):119–129

    Article  Google Scholar 

  17. Foote G (1975) The water drop rebound problem: dynamics of collision. J Atmos Sci 32:390–402

    Google Scholar 

  18. Frenkel J (1945) Viscous flow of cristalline bodies under the action of surface tension. J Phys 9(5):385–391

    Google Scholar 

  19. Gopinath A, Koch DL (2002) Collision and rebound of small droplets in a continuum incompressible gas. J Fluid Mech 454:145–201

    Article  MATH  Google Scholar 

  20. Gotaas C, Havelka P, Jacobsen HJ, Svendsen H, Hase M, Roth N, Weigand B (2007) Effect of viscosity on droplet-droplet collision outcome: experimental study and numerical comparison. Phys Fluids 19:102106

    Google Scholar 

  21. Gupta A, Kumar R (2010) Effect of geometry on droplet formation in the squeezing regime in a microfluidic t-junction. Microfluid Nanofluid 8(6):799–812

    Article  Google Scholar 

  22. He X, Luo L (1997) Theory of lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys Rev E 56:6811–6817

    Article  Google Scholar 

  23. He X, Shan X, Doolen G (1998) Discrete Boltzmann equation model for nonideal gases. Phys Rev E 57:R13–R16

    Google Scholar 

  24. Inamuro ST, Tajima FO (2004) Lattice Boltzmann simulation of droplet collision dynamics. Int J Heat Mass Transf 47:4649–4657

    Article  MATH  Google Scholar 

  25. Jiang Y, Umemura A, Law C (1992) An experimental investigation on the collision behaviour of hydrocarbon droplets. J Fluid Mech 234:171–180

    Article  Google Scholar 

  26. Kim YH, Choi W, Lee JS (2011) Water droplet properties on periodically structured superhydrophobic surfaces: a lattice Boltzmann approach to multiphase flows with high water/air density ratio. Microfluid Nanofluid 10:173–185

    Article  Google Scholar 

  27. Kupershtokh A, Medvedev D (2006) Lattice Boltzmann equation method in electrodynamic problems. J Electrostat 64:581–585

    Article  Google Scholar 

  28. Lafaurie B, Nardone C, Scardovelli R, Zaleski S, Zanetti G (1994) Modeling merging and fragmentation in multiphase flows with surfer. J Comput Phys 113:134–147

    Article  MATH  MathSciNet  Google Scholar 

  29. Lee T, Lin CL (2004) A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio. J Comput Phys 206:16–47

    Google Scholar 

  30. Li Q, He YL, Tang GH, Tao WQ (2011) Lattice boltzmann modeling of microchannel flows in the transition flow regime. Microfluid Nanofluid 10(3):607–618

    Article  Google Scholar 

  31. Luo KH, Xia J, Monaco E (2009) Multiscale modeling of multiphase flows with complex interactions. J Multiscale Model 1(1):125–156

    Article  Google Scholar 

  32. Lycett-Brown D, Karlin IV, Luo KH (2011) Droplet collision simulation by multi-speed lattice boltzmann method. Commun Comput Phys 9(5):1219–1234

    Google Scholar 

  33. Márkus A, Házi G (2008) Determination of the pseudopotential gradient in multiphase lattice Boltzmann models. Phys Fluids 20:022101

    Article  Google Scholar 

  34. Mashayek F, Ashgriz N, Minkowycz WJ, Shobotorban B (2003) Coalescence collision of liquid drops. Int J Heat Mass Transf 46:77–89

    Article  MATH  Google Scholar 

  35. MR Swift WO, Yeomans J (1995) Lattice Boltzmann simulation of nonideal fluids. Phys Rev Lett 75(5):830–834

    Article  Google Scholar 

  36. Nikolopoulos N, Nikas KS, Bergeles G (2009) A numerical investigation of central binary collision of droplets. Comput Fluids 38(6):1191–1202

    Article  MATH  Google Scholar 

  37. Nobari M, Jan Y, Tryggvason G (1996) Head-on collision of drops—a numerical investigation. Phys Fluids 8:29–42

    Google Scholar 

  38. Nobari M, Tryggvason G (1996) Numerical simulation of three-dimensional drop collision. AIAA J 34:750–755

    Article  Google Scholar 

  39. Pan KL, Law CK, Zhou B (2008) Experimental and mechanistic description of merging and bouncing in head-on binary droplet collision. J App Phys 103:064901

    Google Scholar 

  40. Pan KL, Roisman IV (2009) Note on “dynamics of inertia dominated binary drop collisions” [Phys fluids 6:3438 (2004)]. Phys Fluids 21:052104

    Google Scholar 

  41. Pan Y, Suga K (2005) Numerical simulations of binary liquid droplet collision. Phys Fluids 17:082105

    Google Scholar 

  42. Paulsen JD, Burton JC, Nagel SR (2011) Viscous to inertial crossover in liquid drop coalescence. Phys Rev Lett 106:114501

    Google Scholar 

  43. Premnath K, Abraham J (2005) Simulations of binary drop collisions with a multiple-relaxation-time lattice-Boltzmann model. Phys Fluids 17:122105

    Google Scholar 

  44. Qian J, Law C (1997) Regimes of coalescence and phase separation in droplet collision. J Fluid Mech 331:59–80

    Article  Google Scholar 

  45. Roisman IV (2004) Dynamics of inertia dominated binary drop collisions. Phys Fluids 16(9):3438

    Google Scholar 

  46. Roisman IV (2009) Inertia dominated drop collisions. II. An analytical solution of the navier-stokes equations for a spreading viscous film. Phys Fluids 21:052104

    Google Scholar 

  47. Roisman IV, Berberović E, Tropea C (2009) Inertia dominated drop collisions. I. On the universal flow in the lamella. Phys Fluids 21:052103

    Google Scholar 

  48. Rozhkov A, Mitkin V, Theofanous T (2008) The dynamics of visco-elastic bridges in drop coalescence. In: 22nd international congress of theoretical and applied mechanics (ICTAM 2008), Abstract Book and CD-ROM Proceedings. IUTAM (2008). ISBN 978-0-9805142-0-9

  49. Sakakibara B, Inamuro T (2008) Lattice Boltzmann simulation of collision dynamics of unequal-size droplets. Int J Heat Mass Transf 51:3207–3216

    Article  MATH  Google Scholar 

  50. Sbragaglia M, Benzi R, Biferale L, Succi S, Sugiyama K, Toschi F (2007) Generalized lattice Boltzmann method with multirange pseudopotential. Phys Rev E 75:026702

    Google Scholar 

  51. Schelkle M, Frohn A (1995) Three-dimensional lattice Boltzmann simulations of binary collisions between equal droplets. J Aerosol Sci 26:145–146

    Article  Google Scholar 

  52. Shan X (2006) Analysis and reduction of spurious currents in a class of multiphase lattice Boltzmann models. Phys Rev E 73:047701

    Google Scholar 

  53. Shan X, Chen H (1993) Lattice Boltzmann model for simulating flows with multiple phases and components. Phys Rev E 47:1815

    Article  Google Scholar 

  54. Shan X, Chen H (1994) Simulation of non-ideal gases and liquid–gas phase transition by the lattice Boltzmann equation. Phys Rev E 49:2941–2948

    Article  Google Scholar 

  55. Stone HA, Bentley BJ, Leal LG (1986) An experimental study of transient effects in the breakup of viscous drops. J Fluid Mech 173:131–158

    Google Scholar 

  56. Stone HA, Leal LG (1989) Relaxation and breakup of an initially extended drop in an otherwise quiescent liquid. J Fluid Mech 198:399–427

    Google Scholar 

  57. Varnik F, Rios A, Gross M, Steinbach I (2013) Simulation of viscous sintering using the lattice Boltzmann method. Model Simul Mater Sci Eng 21:025003

    Google Scholar 

  58. Willis K, Orme M (2003) Binary droplet collisions in a vacuum environment: an experimental investigation of the role of viscosity. Exp Fluids 34:28–41

    Article  Google Scholar 

  59. Wu M, Cubaud T, Ho C (2004) Scaling law in liquid drop coalescence driven by surface tension. Phys Fluids 16:L51

    Google Scholar 

  60. Yuan P, Schaefer L (2006) Equations of state in a lattice Boltzmann model. Phys Fluids 18:042101

    Google Scholar 

  61. Zhang J (2011) Lattice Boltzmann method for microfluidics: models and applications. Microfluid Nanofluid 10:1–28

    Article  MATH  Google Scholar 

  62. Zhang P, Law CK (2011) An analysis of head-on droplet collision with large deformation in gaseous medium. Phys Fluids 23:042102

    Google Scholar 

Download references

Acknowledgments

Partial support from the UK EPSRC under the Grant No. EP/J016381 is gratefully acknowledged; the authors also acknowledge the HLRN (High Performance Computing Network of Northern Germany) in Hannover for the kind support and for making the computational facilities available. The results reported in this study were obtained by using a modified version of the DL_MESO_LBE package (www.ccp5.ac.uk): the authors acknowledge M. Seaton for providing the original version of the code.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ernesto Monaco.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Monaco, E., Brenner, G. & Luo, K.H. Numerical simulation of the collision of two microdroplets with a pseudopotential multiple-relaxation-time lattice Boltzmann model. Microfluid Nanofluid 16, 329–346 (2014). https://doi.org/10.1007/s10404-013-1202-0

Download citation

Keywords

  • Microdroplet collision
  • Microflows
  • Lattice Boltzmann