Software-programmable continuous-flow multi-purpose lab-on-a-chip


Current lab-on-a-chip (LoC) devices are assay-specific and are custom-built for each single experiment. Performing an experiment requires scientists or engineers to go through the time-consuming process of designing, fabricating, and testing a chip before conducting the actual experiment. This prolonged cycle can take months to complete, increasing effort and cost and reducing productivity. Similarly, minor modifications to an assay protocol re-incur the overheads of the design cycle. In this paper, we develop a multi-purpose, software-programmable Lab-on-a-Chip (SPLoC), where the user simply writes or downloads a program for each experiment. We describe the components necessary to realize the SPLoC, which include a high-level programming language, an abstract instruction set, a runtime and control system, and a microfluidic device. We describe two key features of our high-level language compiler, and describe a novel variable-volume variable-ratio mixer. Finally, we demonstrate our SPLoC on four diverse, real-world assays.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. Amin AM (2011) A Programmable architecture and compiler for microfluidics. Doctoral Dissertation, Purdue University, West Lafayette

  2. Amin AM, Thottethodi M, Vijaykumar TN, Wereley ST, Jacobson SC (2007a) AquaCore: A programmable architecture for microfluidics. In: Proceedings of the 34th international symposium on computer architecture (ISCA-2007), June 2007 pp 254–265

  3. Amin AM, Thottethodi M, Vijaykumar TN, Wereley ST, Jacobson SC (2007b) Aquacore: A general-purpose architecture for programmable microfluidics. In: Proceedings of the 11th international conference on miniaturized systems for chemistry and life sciences (μTAS 2007), October 2007

  4. Amin AM, Thottethodi M, Vijaykumar TN, Wereley ST, Jacobson SC (2008) Automatic volume management for programmable microfluidics. In: Proceedings of the ACM SIGPLAN conference on programming language design and implementation (PLDI-2008), June 2008 pp 56–67

  5. Brody JP, Yager P (1997) Diffusion-based extraction in a microfabricated device. Sens Actuat A 58(1):13–18. doi:10.1016/s0924-4247(97)80219-1

    Article  Google Scholar 

  6. Burns MA, Johnson BN, Brahmasandra SN, Handique K, Webster JR, Krishnan M, Sammarco TS, Man PM, Jones D, Heldsinger D, Mastrangelo CH, Burke DT (1998) An integrated nanoliter DNA analysis device. Science 282(5388):484–487. doi:10.1126/science.282.5388.484

    Article  Google Scholar 

  7. Chuang HS, Wereley ST (2009) Design, fabrication and characterization of a conducting PDMS for microheaters and temperature sensors. J Micromech Microeng 19(4):045010. doi:10.1088/0960-1317/19/4/045010

    Article  Google Scholar 

  8. Chuang HS, Amin AM, Wereley ST, Thottethodi M, Vijaykumar TN, Jacobson SC (2008) Polydimethylsiloxane (PDMS) peristaltic pump characterization for programmable lab-on-a-chip applications. In: Proceedings of the 12th international conference on miniaturized systems for chemistry and life sciences 12

  9. Chuang HS, Jacobson S, Wereley ST (2010) A diffusion-based cyclic particle extractor. Microfluid Nanofluid 9(4):743–753. doi:10.1007/s10404-010-0589-0

    Article  Google Scholar 

  10. Chuang HS, Raviraj T, Wereley ST (2012) Characterizations of gas purge valves for liquid alignment and gas removal in a microfluidic chip. J Micromech Microeng 22(8):085023. doi:10.1088/0960-1317/22/8/085023

    Article  Google Scholar 

  11. Cooksey GA, Sip CG, Folch A (2009) A multi-purpose microfluidic perfusion system with combinatorial choice of inputs, mixtures, gradient patterns, and flow rates. Lab Chip 9(3):417–426. doi:10.1039/B806803H

    Article  Google Scholar 

  12. Cooper K, Torczon L (2004) Engineering a compiler. Morgan Kaufmann, San Francisco

    Google Scholar 

  13. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70(23):4974–4984. doi:10.1021/ac980656z

    Article  Google Scholar 

  14. Fidalgo LM, Maerkl SJ (2011) A software-programmable microfluidic device for automated biology. Lab Chip 11(9):1612–1619. doi:10.1039/C0LC00537A

    Article  Google Scholar 

  15. Grover WH, Skelley AM, Liu CN, Lagally ET, Mathies RA (2003) Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices. Sens Actuator B-Chem 89(3):315–323. doi:10.1016/S0925-4005(02)00468-9

    Article  Google Scholar 

  16. Hadd AG, Raymond DE, Halliwell JW, Jacobson SC, Ramsey JM (1997) Microchip device for performing enzyme assays. Anal Chem 69(17):3407–3412. doi:10.1021/ac970192p

    Article  Google Scholar 

  17. Handique K, Burns MA (2001) Mathematical modeling of drop mixing in a slit-type microchannel. J Micromech Microeng 11(5):548. doi:10.1088/0960-1317/11/5/316

    Article  Google Scholar 

  18. Hasselbrink EF, Shepodd TJ, Rehm JE (2002) High-pressure microfluidic control in lab-on-a-chip devices using mobile polymer monoliths. Anal Chem 74(19):4913–4918. doi:10.1021/ac025761u

    Article  Google Scholar 

  19. Hosokawa K, Fujii T, Endo I (1999) Handling of picoliter liquid samples in a poly(dimethylsiloxane)-based microfluidic device. Anal Chem 71(20):4781–4785. doi:10.1021/ac990571d

    Article  Google Scholar 

  20. Jokerst JV, Jacobson JW, Bhagwandin BD, Floriano PN, Christodoulides N, McDevitt JT (2010) Programmable nano-bio-chip sensors: analytical meets clinical. Anal Chem 82(5):1571–1579. doi:10.1021/ac901743u

    Article  Google Scholar 

  21. Kapishnikov S, Kantsler V, Steinberg V (2006) Continuous particle size separation and size sorting using ultrasound in a microchannel. J Stat Mech. doi:10.1088/1742-5468/2006/01/P01012

    Google Scholar 

  22. Madren SM, Hoffman MD, Brown PJB, Kysela DT, Brun YV, Jacobson SC (2012) Microfluidic device for automated synchronization of bacterial cells. Anal Chem 84(20):8571–8578. doi:10.1021/ac301565g

    Article  Google Scholar 

  23. Nguyen N, Wereley ST (2002) Fundamentals and applications of microfluidics. Artech House, Norwood

    MATH  Google Scholar 

  24. Schultz BE, Misialek S, Wu J, Tang J, Conn MT, Tahilramani R, Wong L (2004) Kinetics and comparative reactivity of human class I and class IIb histone deacetylases. Biochem 43(34):11083–11091. doi:10.1021/bi0494471

    Article  Google Scholar 

  25. Shaikh KA, Ryu KS, Goluch ED, Nam J-M, Liu J, Thaxton CS, Chiesl TN, Barron AE, Lu Y, Mirkin CA, Liu C (2005) A modular microfluidic architecture for integrated biochemical analysis. PNAS 102(28):9745–9750. doi:10.1073/pnas.0504082102

    Article  Google Scholar 

  26. Su F, Chakrabarty K, Fair RB (2006) Microfluidics-based biochips: technology issues, implementation platforms, and design-automation challenges. IEEE transactions on computer-aided design of integrated circuits and systems, 25 (2) pp 211–223. doi:10.1109/TCAD.2005.855956

  27. Thies W, Urban JP, Thorsen T, Amarasinghe S (2007) Abstraction layers for scalable microfluidic biocomputing. Nat Comp. doi:10.1007/s11047-006-9032-6

    Google Scholar 

  28. Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463):113–116. doi:10.1126/science.288.5463.113

    Article  Google Scholar 

  29. Urbanski JP, Thies W, Rhodes C, Amarasinghe S, Thorsen T (2006) Digital microfluidics using soft lithography. Lab Chip 6(1):96–104. doi:10.1039/B510127A

    Article  Google Scholar 

Download references


This work is based in part upon work supported by the National Science Foundation (NSF) under Grant Numbers CCF-0726821 and CCF-0726694. This work was also supported in part by the Purdue Research Foundation (PRF). Work at Microfluidic Innovations was supported by NSF Award IIP-1013625 and NIH grant 1R43EB012392-01. The authors would also like to thank the staff of the Birck Nanotechnology Center.

Author information



Corresponding author

Correspondence to Ahmed M. Amin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Amin, A.M., Thakur, R., Madren, S. et al. Software-programmable continuous-flow multi-purpose lab-on-a-chip. Microfluid Nanofluid 15, 647–659 (2013).

Download citation


  • PDMS
  • Microfluidic Chip
  • Input Stream
  • Runtime System
  • Swarmer Cell