Skip to main content
Log in

Streaming currents in microfluidics with integrated polarizable electrodes

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

A surface in contact with an aqueous solution is electrically characterized by the zeta potential. One way of determining indirectly the zeta potential of a surface is by measuring the streaming currents generated by a Poiseuille flow through a capillary channel with charged walls. We report measurements of streaming current in individual rectangular glass/PDMS microchannels with integrated miniaturized electrodes. Experiments performed using solutions with different salt concentrations and different electrode materials showed that the measured electrical current depends on the electrode material and in general differs from the real value of the streaming current. To determine the streaming current from the experimental data, an equivalent circuit model is proposed. The extracted value of the streaming current is proportional to the flow rate of electrolyte and the calculated glass/PDMS zeta potential scales linearly with the logarithm of the salt concentration. This work offers a thorough analysis of the effects that come into play during streaming current measurements and, in particular, it describes potential sources of error that can affect the streaming current measurements and suggestions on how to correct the measured values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  • Behrens SH, Grier DG (2001) The charge of glass and silica surfaces. J Chem Phys 115(14):6716–6721

    Article  Google Scholar 

  • Bockris JO, Reddy AKN, Gamboa-Aldeco ME (2002) Modern electrochemistry 2A: fundamentals of electrodics. Kluwer Academic Publishers, New York

    Google Scholar 

  • Bruss H (2009) Theoretical microfluidics. Oxford University Press, New York

    Google Scholar 

  • Butt H-J, Graf K, Kappl M (2006) Physics and chemistry of interfaces. Physics textbook. 2nd edn. (revised and enlarged). Wiley-VCH, Weinheim

  • Carré A, Lacarrière V, Birch W (2003) Molecular interactions between DNA and an aminated glass substrate. J Colloid Interf Sci 260(1):49–55. doi:10.1016/S0021-9797(02)00147-9

    Article  Google Scholar 

  • Chang CC, Yang RJ (2010) Electrokinetic energy conversion in micrometer-length nanofluidic channels. Microfluid Nanofluid 9(2–3):225–241. doi:10.1007/s10404-009-0538-y

    Article  Google Scholar 

  • Chapman DL (1913) A contribution to the theory of electrocapillarity. Lond Edinb Dublin Philos Mag J Sci 25(6):475–481

    Article  MATH  Google Scholar 

  • Choi YS, Kim SJ (2009) Electrokinetic flow-induced currents in silica nanofluidic channels. J Colloid Interf Sci 333(2):672–678. doi:10.1016/j.jcis.2009.01.061S0021-9797(09)00151-9

    Article  Google Scholar 

  • Chun MS, Shim MS, Choi NW (2006) Fabrication and validation of a multi-channel type microfluidic chip for electrokinetic streaming potential devices. Lab Chip 6(2):302–309. doi:10.1039/B514327f

    Article  Google Scholar 

  • Daiguji H, Yang PD, Szeri AJ, Majumdar A (2004) Electrochemomechanical energy conversion in nanofluidic channels. Nano Lett 4(12):2315–2321. doi:10.1021/Nl0489945

    Article  Google Scholar 

  • Delgado AV, Gonzalez-Caballero E, Hunter RJ, Koopal LK, Lyklema J (2005) Measurement and interpretation of electrokinetic phenomena (IUPAC technical report). Pure Appl Chem 77(10):1753–1805. doi:10.1351/pac200577101753

    Article  Google Scholar 

  • Duffin AM, Saykally RJ (2008) Electrokinetic power generation from liquid water microjets. J Phys Chem C 112(43):17018–17022. doi:10.1021/Jp8015276

    Article  Google Scholar 

  • Geddes LA, Roeder R (2001) Measurement of the direct-current (Faradic) resistance of the electrode-electrolyte interface for commonly used electrode materials. Ann Biomed Eng 29(2):181–186

    Article  Google Scholar 

  • Gouy LG (1910) Sur la constitution de la charge électrique à la surface d’un électrolyte. J Phys Théor Appl 9(4):457–468

    Article  MATH  Google Scholar 

  • Hasselbrink ER, Hunter MC, Even WR, Irvin JA (2001) Microscale zeta potential evaluations using streaming current measurements. Sandia report. Sandia National Laboratories,Washington, USA

  • Jensen KL, Kristensen JT, Crumrine AM, Andersen MB, Bruus H, Pennathur S (2011) Hydronium-dominated ion transport in carbon-dioxide-saturated electrolytes at low salt concentrations in nanochannels. Phys Rev E Stat Nonlinear Soft Matter Phys 83(5 Pt 2):056307

    Article  Google Scholar 

  • Kirby BJ, Hasselbrink EF (2004a) Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 25(2):187–202. doi:10.1002/elps.200305754

    Article  Google Scholar 

  • Kirby BJ, Hasselbrink EF Jr (2004b) Zeta potential of microfluidic substrates: 2 data for polymers. Electrophoresis 25(2):203–213. doi:10.1002/elps.200305755

    Article  Google Scholar 

  • Levine S, Marriott JR, Robinson K (1975) Theory of electrokinetic flow in a narrow parallel-plate channel. J Chem Soc Farad Trans 2 71(1):1–11

    Article  Google Scholar 

  • Lu F, Yang J, Kwok D (2004) Flow field effect on electric double layer during streaming potential measurements. J Phys Chem B 108(39):14970–14975

    Article  Google Scholar 

  • Mansouri A, Bhattacharjee S, Kostiuk LW (2007) Transient electrokinetic transport in a finite length microchannel: currents, capacitance, and an electrical analogy. J Phys Chem B 111(44):12834–12843. doi:10.1021/Jp074386c

    Article  Google Scholar 

  • Martins DC, Chu V, Prazeres DMF, Conde JP (2011) Electrical detection of DNA immobilization and hybridization by streaming current measurements in microchannels. Appl Phys Lett 99(18):183702–183704. doi:10.1063/1.3658457

    Google Scholar 

  • Mayer S, Geddes LA, Bourland JD, Ogborn L (1992) Faradic resistance of the electrode electrolyte interface. Med Biol Eng Comput 30(5):538–542

    Article  Google Scholar 

  • Morikawa K, Mawatari K, Kazoe Y, Tsukahara T, Kitamori T (2011) Shift of isoelectric point in extended nanospace investigated by streaming current measurement. Appl Phys Lett 99(12):123115–123117. doi:10.1063/1.3644481

    Google Scholar 

  • Najafi K, Wise KD (1986) An implantable multielectrode array with on-chip signal-processing. IEEE J Solid-State Circ 21(6):1035–1044

    Article  Google Scholar 

  • Norde W (2003) Colloids and interfaces in life sciences. Marcel Dekker, Monticello

    Book  Google Scholar 

  • Olthuis W, Schippers B, Eijkel J, van den Berg A (2005) Energy from streaming current and potential. Sensor Actuat B Chem 111:385–389. doi:10.1016/j.snb.2005.03.039

    Article  Google Scholar 

  • Persat A, Chambers RD, Santiago JG (2009) Basic principles of electrolyte chemistry for microfluidic electrokinetics. Part I: acid-base equilibria and pH buffers. Lab Chip 9(17):2437–2453. doi:10.1039/B906465f

    Article  Google Scholar 

  • Renaud L, Kleimann P, Morin P (2004) Zeta potential determination by streaming current modelization and measurement in electrophoretic microfluidic systems. Electrophoresis 25(1):123–127. doi:10.1002/elps.200305696

    Article  Google Scholar 

  • Shinwari MW, Zhitomirsky D, Deen IA, Selvaganapathy PR, Deen MJ, Landheer D (2010) Microfabricated reference electrodes and their biosensing applications. Sensors-Basel 10(3):1679–1715. doi:10.3390/S100301679

    Article  Google Scholar 

  • Simonis A, Luth H, Wang J, Schoning MJ (2004) New concepts of miniaturised reference electrodes in silicon technology for potentiometric sensor systems. Sensor Actuat B Chem 103(1–2):429–435. doi:10.1016/j.snb.2004.04.072

    Article  Google Scholar 

  • Suzuki H, Hiratsuka A, Sasaki S, Karube I (1998) Problems associated with the thin-film Ag/AgCl reference electrode and a novel structure with improved durability. Sensor Actuat B Chem 46(2):104–113

    Article  Google Scholar 

  • Suzuki H, Shiroishi H, Sasaki S, Karube I (1999) Microfabricated liquid junction Ag/AgCl reference electrode and its application to a one-chip potentiometric sensor. Anal Chem 71(22):5069–5075

    Article  Google Scholar 

  • Ueda M, Takamura Y, Horiike Y, Baba Y (2002) Molecular detection in a microfluidic device by streaming current measurements. Jpn J Appl Phys 41:1275–1277

    Article  Google Scholar 

  • van der Heyden FHJ, Stein D, Dekker C (2005) Streaming currents in a single nanofluidic channel. Phys Rev Lett 95(11):116104–116107. doi:10.1103/Physrevlett.95.116104

    Google Scholar 

  • van der Heyden FHJ, Bonthuis DJ, Stein D, Meyer C, Dekker C (2007) Power generation by pressure-driven transport of ions in nanofluidic channels. Nano Lett 7(4):1022–1025. doi:10.1021/Nl070194h

    Article  Google Scholar 

  • Wise KD, Angell JB (1975) A low-capacitance multielectrode probe for use in extracellular neurophysiology. IEEE Trans Biomed Eng 22(3):212–219

    Article  Google Scholar 

  • Yuan XZ, Song C, Wang H, Zhang J (2010) Electrochemical impedance spectroscopy in PEM fuel cells: fundamentals and applications. Springer, London

    Book  Google Scholar 

Download references

Acknowledgments

The authors wish to thank J. Bernardo, F. Silva, and V. Soares for help in clean room processing and characterization. D.C. Martins acknowledges the International Iberian Nanotechnology Laboratory (INL) for a Ph.D. Grant. The authors also acknowledge funding from Fundação de Ciência e Tecnologia (FCT) through the Associated Laboratories IN (Institute of Nanoscience and Nanotechnology) and IBB (Institute of Biotechnology and Bioengineering) and through project PTDC/CTM/104387/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Conde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martins, D.C., Chu, V., Prazeres, D.M.F. et al. Streaming currents in microfluidics with integrated polarizable electrodes. Microfluid Nanofluid 15, 361–376 (2013). https://doi.org/10.1007/s10404-013-1153-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-013-1153-5

Keywords

Navigation