Skip to main content
Log in

Droplet transport by electrowetting: lets get rough!

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Since the pioneering works of Wenzel and Cassie Baxter in the 1930s, and now with the trivialization of the micro- and nanotechnology facilities, superhydrophobic surfaces have been announced as potentially amazing components for applications such as fluidic, optical, electronic, or thermal devices. In this paper, we show that using superhydrophobic surfaces in digital microfluidic devices could solve some usual limitations or enhance their performances. Thus, we investigate a specific monophasic (air environment) microfluidic device based on electrowetting integrating either a hydrophobic or a superhydrophobic surface as a counter-electrode. The droplet transport using a superhydrophobic surface compared with a classical hydrophobic system led to some original results. Characterization of the dynamic contact angle and the droplet shape allows us to get new insight of the fluid dynamics. Among the remarkable properties reported, a 30 % lower applied voltage, a 30 % higher average speed with a maximum instantaneous speed of 460 mm/s have been measured. Furthermore, we have noticed a huge droplet deformation leading to an increase by a factor 5 of the Weber number (from 1.4 to 7.0) on SH compared to hydrophobic surfaces. Finally, we discuss some of the repercussions of this behaviour especially for microfluidic device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdelgawad M, Park P, Wheeler AR (2009) Optimization of device geometry in single-plate digital microfluidics. J Appl Phys 105(9):094, 506–507. doi:10.1063/1.3117216

    Google Scholar 

  • Au SH, Kumar P, Wheeler AR (2011) A new angle on pluronic additives: advancing droplets and understanding in digital microfluidics. Langmuir 27(13):8586–8594. doi:10.1021/la201185c

    Google Scholar 

  • Bavière R, Boutet J, Fouillet Y (2008) Dynamics of droplet transport induced by electrowetting actuation. Microfluid Nanofluid 4(4):287–294. doi:10.1007/s10404-007-0173-4

    Google Scholar 

  • Bocquet L, Lauga E (2011) A smooth future? Nat Mater 10(5): 334–337. doi:10.1038/nmat2994

    Google Scholar 

  • Brzoska JB, Brochard-Wyart F, Rondelez F (1993) Motions of droplets on hydrophobic model surfaces induced by thermal gradients. Langmuir 9(8): 2220–2224. doi:10.1021/la00032a052

    Google Scholar 

  • Coffinier Y, Janel S, Addad A, Blossey R, Gengembre L, Payen E, Boukherroub R (2007) Preparation of superhydrophobic silicon oxide nanowire surfaces. Langmuir 23(4):1608–1611

    Article  Google Scholar 

  • Dufour R, Brunet P, Harnois M, Boukherroub R, Thomy V, Senez V (2012) Zipping effect on omniphobic surfaces for controlled deposition of minute amounts of fluid or colloids. Small 8(8):1229–1236. doi:10.1002/smll.201101895

    Google Scholar 

  • Eral HB, Augustine DM, Duits MHG, Mugele F (2011) Suppressing the coffee stain effect: how to control colloidal self-assembly in evaporating drops using electrowetting. Soft Matter 7(10):4954–4958. doi:10.1039/C1SM05183K

    Google Scholar 

  • Galopin E, Piret G, Szunerits S, Lequette Y, Faille C, Boukherroub R (2010) Selective adhesion of bacillus cereus spores on heterogeneously wetted silicon nanowires. Langmuir 26(5):3479–3484. doi:10.1021/la9030377

    Google Scholar 

  • Grosse S, Schroder W (2008) Dynamic wall-shear stress measurements in turbulent pipe flow using the micro-pillar sensor mps3. Int J Heat Fluid Flow 29(3):830–840. http://www.sciencedirect.com/science/article/B6V3G-4S0HC0X-1/2/f1538e7159589d0351677b042da38325

  • Jonsson-Niedziolka M, Lapierre F, Coffinier Y, Parry SJ, Zoueshtiagh F, Foat T, Thomy V, Boukherroub R (2011) Ewod driven cleaning of bioparticles on hydrophobic and superhydrophobic surfaces. Lab Chip 11(3):490–496. doi:10.1039/C0LC00203H

    Google Scholar 

  • Ko S, Lee H, Kang K (2008) Hydrodynamic flows in electrowetting. Langmuir 24(3):1094–1101

    Article  Google Scholar 

  • Lapierre F, Brunet P, Coffinier Y, Thomy V, Blossey R, Boukherroub R (2010) Electrowetting and droplet impalement experiments on superhydrophobic multiscale structures. Faraday Discuss 146:125–139. doi:10.1039/b925544c

    Google Scholar 

  • Lapierre F, Piret G, Drobecq H, Melnyk O, Coffinier Y, Thomy V, Boukherroub R (2011) High sensitive matrix-free mass spectrometry analysis of peptides using silicon nanowires-based digital microfluidic device. Lab Chip 11(9):1620–1628. doi:10.1039/C0LC00716A

    Google Scholar 

  • Lu HW, Glasner K, Bertozzi AL, Kim CJ (2007) A diffuse-interface model for electrowetting drops in a hele-shaw cell. J Fluid Mech 590:411–435

    Article  MATH  Google Scholar 

  • Maali A, Bhushan B (2012) Measurement of slip length on superhydrophobic surfaces. Phil Trans R Soc A 370(1967):2304–2320

    Article  Google Scholar 

  • Malic L, Brassard D, Veres T, Tabrizian M (2010) Integration and detection of biochemical assays in digital microfluidic loc devices. Lab Chip 10(4):418–431. doi:10.1039/b917668c

    Google Scholar 

  • Malk R, Fouillet Y, Davoust L (2009) Rotating flow within a droplet actuated with ac ewod. Procedia Chemistry 1(1):1107–1110. doi:http://www.sciencedirect.com/science/article/B983C-4X49BRW-9W/2/1e1be9bf61884d5c0eae360c29438bb3

    Google Scholar 

  • Mugele F, Baret JC (2005) Electrowetting: from basics to applications. J Phys Condens Matter 17(28):R705–R774. http://stacks.iop.org/0953-8984/17/R705

    Google Scholar 

  • Nelson WC, Sen P, Kim CJC (2011) Dynamic contact angles and hysteresis under electrowetting-on-dielectric. Langmuir 27(16):10319–10326. doi:10.1021/la2018083,

    Google Scholar 

  • Oh JM, Ko SH, Kang KH (2008) Shape oscillation of a drop in ac electrowetting. Langmuir 24(15):8379–8386. doi:10.1021/la8007359

    Google Scholar 

  • Perry G, Thomy V, Das MR, Coffinier Y, Boukherroub R (2012) Inhibiting protein biofouling using graphene oxide in droplet-based microfluidic microsystems. Lab Chip 12(9):1601–1604. doi:10.1039/C2LC21279J

    Google Scholar 

  • Piret G, Coffinier Y, Roux C, Melnyk O, Boukherroub R (2008) Biomolecule and nanoparticle transfer on patterned and heterogeneously wetted superhydrophobic silicon nanowire surfaces. Langmuir 24:1670–1672

    Article  Google Scholar 

  • Schertzer M, Gubarenko S, Ben Mrad R, Sullivan P (2010a) An empirically validated model of the pressure within a droplet confined between plates at equilibrium for low bond numbers. Exp Fluids 48:851–862. doi: 10.1007/s00348-009-0773-8

    Google Scholar 

  • Schertzer MJ, Gubarenko SI, Ben-Mrad R, Sullivan PE (2010b) An empirically validated analytical model of droplet dynamics in electrowetting on dielectric devices. Langmuir 26(24):19230–19238. doi:10.1021/la103702t

    Google Scholar 

  • Verplanck N, Coffinier Y, Thomy V, Boukherroub R (2007a) Wettability switching techniques on superhydrophobic surfaces. Nanoscale Res Lett 2(12):577–596. doi:10.1007/s11671-007-9102-4,

    Google Scholar 

  • Verplanck N, Galopin E, Camart JC, Thomy V, Coffinier Y, Boukherroub R (2007b) Reversible electrowetting on superhydrophobic silicon nanowires. Nano Lett 7(3):813–817

    Article  Google Scholar 

  • Zhang J, Han Y (2009) dual-parallel-channel shape-gradient surfaces: Toward oriented and reversible movement of water droplets. Langmuir 25(24):14195–14199. doi:10.1021/la9014898

    Google Scholar 

  • Zhang J, Lu X, Huang W, Han Y (2005) Reversible superhydrophobicity to superhydrophilicity transition by extending and unloading an elastic polyamide film. Macromol Rapid Commun 26(6):477–480. doi:10.1002/marc.200400512

    Google Scholar 

Download references

Acknowledgments

The Centre National de la Recherche Scientifique (CNRS), the Defence Science and Technology Laboratory (Porton Down, United Kingdom) and the European Community Seventh Frame-work Programme (FP7/2007–2013) under grant agreement no. 227243 are gratefully acknowledged for financial support. The authors thank F. Zoueshtiagh and P. Brunet for their kind support during the visualizations and G. Piret for her kind support for superhydrophobic surfaces realization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Lapierre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lapierre, F., Jonsson-Niedziolka, M., Coffinier, Y. et al. Droplet transport by electrowetting: lets get rough!. Microfluid Nanofluid 15, 327–336 (2013). https://doi.org/10.1007/s10404-013-1149-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-013-1149-1

Keywords

Navigation