Microfluidics and Nanofluidics

, Volume 14, Issue 5, pp 895–902 | Cite as

Microscale confinement features can affect biofilm formation

  • Aloke Kumar
  • David Karig
  • Rajesh Acharya
  • Suresh Neethirajan
  • Partha P. Mukherjee
  • Scott Retterer
  • Mitchel J. Doktycz
Short Communication

Abstract

The majority of bacteria in nature live in biofilms, where they are encased by extracellular polymeric substances (EPS) and adhere to various surfaces and interfaces. Investigating the process of biofilm formation is critical for advancing our understanding of microbes in their most common mode of living. Despite progress in characterizing the effect of various environmental factors on biofilm formation, work remains to be done in the realm of exploring the inter-relationship between hydrodynamics, microbial adhesion and biofilm growth. We investigate the impact of secondary flow structures, which are created due to semi-confined features in a microfluidic device, on biofilm formation of Shewanella oneidensis MR-1. Secondary flows are important in many natural and artificial systems, but few studies have investigated their role in biofilm formation. To direct secondary flows in the creeping flow regime, where the Reynolds number is low, we flow microbe-laden culture through microscale confinement features. We demonstrate that these confinement features can result in pronounced changes in biofilm dynamics as a function of the fluid flow rate.

Keywords

Microfluidics Biofilms Secondary flows Bacteria Micro-vortices 

Supplementary material

Supplementary Video 1: This video depicts the backward flow in the channel. The fluid is seeded with 500 nm fluorescent polystyrene particles. The higher magnification images clearly show the vortex structure (MPG 5378 kb)

10404_2012_1120_MOESM2_ESM.mpg (1.1 mb)
Supplementary Video 2: This video shows the time sequence of biofilm formation in the microfluidic device at 8 µL/hr. The subsequent frames are images that were taken 25 minutes apart. The video spans a total time for 20 hrs (MPG 1114 kb)
10404_2012_1120_MOESM3_ESM.pdf (1.6 mb)
Supplementary material 3 (PDF 1661 kb)

References

  1. Ardekani AM, Gore E (2012) Emergence of a limit cycle for swimming microorganisms in a vortical flow of a viscoelastic fluid. Phys Rev E 85(5):056309. doi:10.1103/PhysRevE.85.056309 Google Scholar
  2. Boedicker JQ, Vincent ME, Ismagilov RF (2009) Microfluidic confinement of single cells of bacteria in small volumes initiates high-density behavior of quorum sensing and growth and reveals its variability. Angewandte Chemie 48(32):5908–5911. doi:10.1002/anie.200901550 CrossRefGoogle Scholar
  3. Callow JA, Callow ME (2011) Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat Commun 2:244. doi:10.1038/ncomms1251 CrossRefGoogle Scholar
  4. Chai L, Vlamakis H, Kolter R (2011) Extracellular signal regulation of cell differentiation in biofilms. MRS Bull 36(5):374–379. doi:10.1557/mrs.2011.68 CrossRefGoogle Scholar
  5. Chen CH, Lu Y, Sin MLY, Mach KE, Zhang DD, Gau V, Liao JC, Wong PK (2010) Antimicrobial susceptibility testing using high surface-to-volume ratio microchannels. Anal Chem 82(3):1012–1019. doi:10.1021/ac9022764 CrossRefGoogle Scholar
  6. Cho HJ, Jonsson H, Campbell K, Melke P, Williams JW, Jedynak B, Stevens AM, Groisman A, Levchenko A (2007) Self-organization in high-density bacterial colonies: efficient crowd control. PLoS Biol 5(11):2614–2623. doi:e30210.1371/journal.pbio.0050302 CrossRefGoogle Scholar
  7. Chung KK, Schumacher JF, Sampson EM, Burne RA, Antonelli PJ, Brennan AB (2007) Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus. Biointerphases 2(2):89–94. doi:10.1116/1.2751405 CrossRefGoogle Scholar
  8. Connell JL, Wessel AK, Parsek MR, Ellington AD, Whiteley M, Shear JB (2010) Probing prokaryotic social behaviors with bacterial “Lobster Traps”. Mbio 1(4):e00202–e00210. doi:1128/mBio.00202-10 CrossRefGoogle Scholar
  9. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappinscott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745CrossRefGoogle Scholar
  10. De la Fuente L, Montanes E, Meng YZ, Li YX, Burr TJ, Hoch HC, Wu MM (2007) Assessing adhesion forces of type I and type IV pili of Xylella fastidiosa bacteria by use of a microfluidic flow chamber. Appl Environ Microbiol 73(8):2690–2696. doi:101128/Aem.02649-06 CrossRefGoogle Scholar
  11. Guglielmini L, Rusconi R, Lecuyer S, Stone HA (2011) Three-dimensional features in low-Reynolds-number confined corner flows. J Fluid Mech 668:33–57. doi:10.1017/s0022112010004519 MATHCrossRefGoogle Scholar
  12. Haussler S, Parsek MR (2010) Biofilms 2009: new perspectives at the heart of surface-associated microbial communities. J Bacteriol 192(12):2941–2949. doi:10.1128/jb.00332-10 CrossRefGoogle Scholar
  13. Hochbaum AI, Aizenberg J (2010) Bacteria pattern spontaneously on periodic nanostructure arrays. Nano Lett 10(9):3717–3721. doi:10.1021/nl102290k CrossRefGoogle Scholar
  14. Hohne DN, Younger JG, Solomon MJ (2009) Flexible microfluidic device for mechanical property characterization of soft viscoelastic solids such as bacterial biofilms. Langmuir 25(13):7743–7751. doi:10.1021/la803413x CrossRefGoogle Scholar
  15. Ingham CJ, Vlieg J (2008) MEMS and the microbe. Lab Chip 8(10):1604–1616. doi:10.1039/b804790a CrossRefGoogle Scholar
  16. Janakiraman V, Englert D, Jayaraman A, Baskaran H (2009) Modeling growth and quorum sensing in biofilms grown in microfluidic chambers. Ann Biomed Eng 37(6):1206–1216. doi:10.1007/s10439-009-9671-8 CrossRefGoogle Scholar
  17. Khoo X, Grinstaff MW (2011) Novel infection-resistant surface coatings: a bioengineering approach. MRS Bull 36(5):357–366. doi:10.1557/mrs.2011.66 CrossRefGoogle Scholar
  18. Kim KP, Kim YG, Choi CH, Kim HE, Lee SH, Chang WS, Lee CS (2010) In situ monitoring of antibiotic susceptibility of bacterial biofilms in a microfluidic device. Lab Chip 10(23):3296–3299. doi:10.1039/c0lc00154f CrossRefGoogle Scholar
  19. Lee JH, Kaplan JB, Lee WY (2008) Microfluidic devices for studying growth and detachment of Staphylococcus epidermidis biofilms. Biomed Microdevices 10(4):489–498. doi:10.1007/s10544-007-9157-0 CrossRefGoogle Scholar
  20. Liu Y, Tay JH (2002) The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Res 36(7):1653–1665. doi:10.1016/s0043-1354(01)00379-7 CrossRefGoogle Scholar
  21. Lovley DR (2008) The microbe electric: conversion of organic matter to electricity. Curr Opin Biotechnol 19(6):564–571. doi:10.1016/j.copbio.2008.10.005 CrossRefGoogle Scholar
  22. Mabrouk N, Deffuant G, Tolker-Nielsen T, Lobry C (2010) Bacteria can form interconnected microcolonies when a self-excreted product reduces their surface motility: evidence from individual-based model simulations. Theory Biosci 129(1):1–13. doi:10.1007/s12064-009-0078-8 CrossRefGoogle Scholar
  23. Moffatt HK (1964) Viscous and resistive eddies near a sharp corner. J Fluid Mech 18(1):1–18. doi:10.1017/s0022112064000015 MATHCrossRefGoogle Scholar
  24. Nakagaki T, Yamada H, Toth A (2000) Maze-solving by an amoeboid organism. Nature 407(6803):470. doi:10.1038/35035159 CrossRefGoogle Scholar
  25. Nealson KH, Finkel SE (2011) Electron flow and biofilms. MRS Bull 36(5):380–384. doi:10.1557/mrs.2011.69 CrossRefGoogle Scholar
  26. Neethirajan S, Karig D, Kumar A, Mukherjee PP, Retterer S, Doktycz M (2012) Biofilms in microfluidic devices. In: Bhushan B (ed) Encylopedia of nanotechnology. Springer, New YorkGoogle Scholar
  27. Paramonova E, Kalmykowa OJ, van der Mei HC, Busscher HJ, Sharma PK (2009) Impact of hydrodynamics on oral biofilm strength. J Dent Res 88(10):922–926. doi:10.1177/0022034509344569 CrossRefGoogle Scholar
  28. Park A, Jeong H–H, Lee J, Kim KP, Lee C-S (2011) Effect of shear stress on the formation of bacterial biofilm in a microfluidic channel. Biochip J 5(3):236–241. doi:10.1007/s13206-011-5307-9 CrossRefGoogle Scholar
  29. Purevdorj B, Costerton JW, Stoodley P (2002) Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 68(9):4457–4464. doi:10.1128/aem.68.9.4457-4464.2002 CrossRefGoogle Scholar
  30. Qian F, Baum M, Gu Q, DE Morse (2009) A 1.5 µL microbial fuel cell for on-chip bioelectricity generation. Lab Chip 9(21):3076–3081. doi:10.1039/b910586g CrossRefGoogle Scholar
  31. Remis JP, Costerton JW, Auer M (2010) Biofilms: structures that may facilitate cell–cell interactions. ISME J 4(9):1085–1087. doi:10.1038/ismej.2010.105 CrossRefGoogle Scholar
  32. Richter L, Stepper C, Mak A, Reinthaler A, Heer R, Kast M, Bruckl H, Ertl P (2007) Development of a microfluidic biochip for online monitoring of fungal biofilm dynamics. Lab Chip 7(12):1723–1731. doi:10.1039/b708236c CrossRefGoogle Scholar
  33. Rusconi R, Lecuyer S, Guglielmini L, Stone HA (2010) Laminar flow around corners triggers the formation of biofilm streamers. J R Soc Interface 7(50):1293–1299. doi:10.1098/rsif.2010.0096 CrossRefGoogle Scholar
  34. Rusconi R, Lecuyer S, Autrusson N, Guglielmini L, Stone HA (2011) Secondary flow as a mechanism for the formation of biofilm streamers. Biophys J 100(6):1392–1399. doi:10.1016/j.bpj.2011.01.065 CrossRefGoogle Scholar
  35. Santiago JG, Wereley ST, Meinhart CD, Beebe DJ, Adrian RJ (1998) A particle image velocimetry system for microfluidics. Exp Fluids 25(4):316–319CrossRefGoogle Scholar
  36. Shen C, Floryan JM (1985) Low Reynolds-number flow over cavities. Phys Fluids 28(11):3191–3202MathSciNetMATHCrossRefGoogle Scholar
  37. Shrout JD, Tolker-Nielsen T, Givskov M, Parsek MR (2011) The contribution of cell–cell signaling and motility to bacterial biofilm formation. MRS Bull 36(5):367–373. doi:10.1557/mrs.2011.67 CrossRefGoogle Scholar
  38. Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6(3):199–210. doi:10.1038/nrmicro1838 CrossRefGoogle Scholar
  39. Stoodley P, Dodds I, Boyle JD, Lappin-Scott HM (1999) Influence of hydrodynamics and nutrients on biofilm structure. J Appl Microbiol 85:19S–28SCrossRefGoogle Scholar
  40. Thormann KM, Saville RM, Shukla S, Pelletier DA, Spormann AM (2004) Initial phases of biofilm formation in Shewanella oneidensis MR-1. J Bacteriol 186(23):8096–8104. doi:10.1128/jb.186.23.8096-8104.2004 CrossRefGoogle Scholar
  41. Valiei A, Kumar A, Mukherjee PP, Liu Y, Thundat T (2012) A web of streamers: biofilm formation in a porous microfluidic device. Lab Chip 12(24):5133–5137CrossRefGoogle Scholar
  42. Volfson D, Cookson S, Hasty J, Tsimring LS (2008) Biomechanical ordering of dense cell populations. Proc Natl Acad Sci USA 105(40):15346–15351. doi:10.1073/pnas.0706805105 CrossRefGoogle Scholar
  43. Wereley ST, Gui L, Meinhart CD (2002) Advanced algorithms for microscale particle image velocimetry. AIAA J 40(6):1047–1055CrossRefGoogle Scholar
  44. Wierschem A, Aksel N (2004) Influence of inertia on eddies created in films creeping over strongly undulated substrates. Phys Fluids 16(12):4566–4574. doi:10.1063/1.1811673 CrossRefGoogle Scholar
  45. Wong GCL, O’Toole GA (2011) All together now: integrating biofilm research across disciplines. MRS Bull 36(5):339–345. doi:10.1557/mrs.2011.64 CrossRefGoogle Scholar
  46. Yawata Y, Toda K, Setoyama E, Fukuda J, Suzuki H, Uchiyama H, Nomura N (2010) Bacterial growth monitoring in a microfluidic device by confocal reflection microscopy. J Biosci Bioeng 110(1):130–133. doi:10.1016/j.jbiosc.2010.01.009 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Aloke Kumar
    • 1
  • David Karig
    • 2
  • Rajesh Acharya
    • 1
  • Suresh Neethirajan
    • 3
  • Partha P. Mukherjee
    • 4
  • Scott Retterer
    • 1
  • Mitchel J. Doktycz
    • 1
  1. 1.Biosciences DivisionOak Ridge National LaboratoryOak RidgeUSA
  2. 2.Research and Exploratory Development DepartmentJohns Hopkins University Applied Physics LaboratoryBaltimoreUSA
  3. 3.School of EngineeringUniversity of GuelphGuelphCanada
  4. 4.Department of Mechanical EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations