Skip to main content

Trajectory shift of magnetic microchains in an oscillating field

Abstract

We report an interesting phenomenon of “trajectory shift” of magnetic chains in an oscillating field, when the phase angle lags of chains to the external field exceeding 90°. The phenomenon shifts the oscillating trajectory of chain along a new axis, which is perpendicular to its original axis. Applicability of the phenomenon to a stable chain in various conditions is experimented systematically. The trajectory shift provides an effective manipulating mechanism in micro-electro-mechanical-systems, such as steering of micro-swimmers. We successfully demonstrate that the driven direction of a micro-swimmer can be controlled by shifting its oscillating trajectory without a physical re-configuration of the external field.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Biswal S, Gast A (2004a) Micromixing with linked chains of paramagnetic particles. Anal Chem 76:6448–6455

    Article  Google Scholar 

  2. Biswal S, Gast A (2004b) Rotational dynamics of semiflexible paramagnetic particle chains. Phys Rev E 69:041406

    Article  Google Scholar 

  3. Cebers A, Ozols M (2006) Dynamics of an active magnetic particle in a rotating magnetic field. Phys Rev E 73:021505

    Article  Google Scholar 

  4. Chen CY, Li CS (2010) Ordered microdroplet formations of thin ferrofluid layer breakups. Phys Fluids 22:014105

    Article  Google Scholar 

  5. Chen CY, Tsai WK, Miranda JA (2008) Hybrid ferrohydrodynamic instability: coexisting peak and labyrinthine patterns. Phys Rev E 77:056306

    Article  Google Scholar 

  6. Chen CY, Yang YS, Miranda JA (2009) Miscible ferrofluid patterns in a radial magnetic field. Phys Rev E 80:016314

    Article  Google Scholar 

  7. Chen CY, Wu WL, Miranda JA (2010) Magnetically induced spreading and pattern selection in thin ferrofluid drops. Phys Rev E 82:056321

    Article  Google Scholar 

  8. Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J (2005) Microscopic artificial swimmers. Nature 437:862

    Article  Google Scholar 

  9. Ghosh A, Fischer P (2009) Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett 9(6):2243–2245

    Article  Google Scholar 

  10. Gijs M (2004) Magnetic bead handling on-chip: new opportunities for analytical application. Microfluid Nanofluid 1:22–40

    Google Scholar 

  11. Kang TG, Hulsen M, Anderson P, den Toonder J, Meijer H (2007) Chaotic mixing induced by a magnetic chain in a rotating magnetic field. Phys Rev E 76:066303

    Article  Google Scholar 

  12. Karle M, Wohrle J, Miwa J, Paust N, Roth G, Zengerle R, von Stetten F (2011) Controlled counter-flow motion of magnetic bead chains rolling along microchannels. Microfluid Nanofluid 10:935–939

    Article  Google Scholar 

  13. Kodama S (2008) Dynamic ferrofluid sculpture: organic shape-changing art forms. Commun ACM 51:79

    Article  Google Scholar 

  14. Lacharme F, Vandevyver C, Gijs MAM (2009) Magnetic beads retention device for sandwich immunoassay comparison of off-chip and on-chip antibody incubation. Microfluid Nanofluid 7:479–487

    Article  Google Scholar 

  15. Li YH, Sheu ST, Pai JM, Chen CY (2012a) Manipulations of oscillating micro magnetic particle chains. J Appl Phys 111:07A924

    Article  Google Scholar 

  16. Li YH, Chen CY, Sheu ST, Pai JM (2012b) Dynamics of a microchain of superparamagnetic beads in an oscillating field. Microfluid Nanofluid 13:579–588

    Article  Google Scholar 

  17. Martin J, Shea-Roher L, Solis K (2009) Strong intrinsic mixing in vortex magnetic fields. Phys Rev E 80:016312

    Article  Google Scholar 

  18. Melle S, Martin J (2003) Chain model of a magnetorheological suspension in a rotating field. J Chem Phys 118(21):9875

    Article  Google Scholar 

  19. Melle S, Fuller G, Rubio M (2000) Structure and dynamics of magnetorheological fluids in rotating magnetic fields. Phys Rev E 61(4):4111–4117

    Article  Google Scholar 

  20. Melle S, Calderon O, Fuller G, Rubio M (2002a) Polarizable particle aggregation under rotating magnetic fields using scattering dichroism. J Colloid Interface Sci 247:200

    Article  Google Scholar 

  21. Melle S, Calderon O, Rubio M, Fuller G (2002b) Rotational dynamics in dipolar colloidal suspensions: video microscopy experiments and simulations results. J Non-Newton Fluid Mech 102(2):135–148

    MATH  Article  Google Scholar 

  22. Melle S, Calderon O, Rubio M, Fuller G (2003) Microstructure evolution in magnetorheological suspensions governed by Mason number. Phys Rev E 68:041503

    Article  Google Scholar 

  23. Nguyen NT (2012) Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluid Nanofluid 12:1–16

    Article  Google Scholar 

  24. Petousis I, Homburg E, Derks R, Dietzel A (2007) Transient behaviour of magnetic micro-bead chains rotating in a fluid by external fields. Lab Chip 7:1746

    Article  Google Scholar 

  25. Rosensweig RE (1985) Ferrohydrodynamics. Cambridge University Press, Cambridge

    Google Scholar 

  26. Roy T, Sinha A, Chakraborty S, Ganguly R, Puri I (2009) Magnetic microsphere-based mixers for microsroplets. Phys Fluids 21:027101

    Article  Google Scholar 

  27. Terray A, Oakey J, Marr D (2002) Microfluidic control using colloidal devices. Science 296:1841–1844

    Article  Google Scholar 

  28. Vuppu A, Garcia A, Hayes M (2003) Video microscopy of dynamically aggregated paramagnetic particle chains in an applied rotating magnetic field. Langmuir 19:8646

    Article  Google Scholar 

  29. Weddemann A, Wittbracht F, Auge A, Hutten A (2011) Particle flow control by induced dipolar interaction of superparamagnetic microbeads. Microfluid Nanofluid 10:459–463

    Article  Google Scholar 

  30. Wittbracht F, Weddemann A, Eickenberg B, Hutten A (2012) On the direct employment of dipolar particle interaction in microfluidic system. Microfluid Nanofluid 13:543–554

    Article  Google Scholar 

Download references

Acknowledgments

The financial support from the National Science Council of Republic of China (Taiwan) through Grant NSC 99-2221-E-009-057-MY3 is acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ching-Yao Chen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, YH., Lin, HC. & Chen, CY. Trajectory shift of magnetic microchains in an oscillating field. Microfluid Nanofluid 14, 831–838 (2013). https://doi.org/10.1007/s10404-012-1094-4

Download citation

Keywords

  • Magnetic particle
  • Micro-chain
  • Trajectory shift
  • Micro-swimmer
  • Steering mechanism