Microfluidics and Nanofluidics

, Volume 14, Issue 3–4, pp 731–741 | Cite as

Sub-microliter scale in-gel loop-mediated isothermal amplification (LAMP) for detection of Mycobacterium tuberculosis

  • Dammika P. Manage
  • Linda Chui
  • Linda M. PilarskiEmail author
Research Paper


Tuberculosis (TB), caused by Mycobacterium tuberculosis, is a common human disease that is prevalent in resource-deprived areas of the world. Current detection techniques for TB require expensive conventional instruments in a laboratory setting, preventing accessible and low cost diagnosis of the disease. Using a loop-mediated isothermal amplification (LAMP) assay, we have amplified and detected TB in a 6 × 8 semisolid polyacrylamide gel post array using an inexpensive prototype instrument. Each post contains 670 nL of volume, minimizing the need for large quantities of reagents. Amplified DNA is detected via fluorescence of the dye LCGreen Plus+, which is polymerized into the gel along with other reagents. The prototype device contains a Peltier element for heating, a diode laser as an excitation source, and a CCD camera for detecting fluorescence in real-time. About 12 Mycobacterium tuberculosis genomes per gel post can be detected within 75 min of amplification. This sensitivity is similar to that obtained by conventional methods using a commercial thermocycler. We achieved comparable LAMP amplification when the template is added externally or when the template is polymerized in the gel. This rapid isothermal amplification technology, with its simple thermal requirements, has the potential to be integrated into micro-devices and serves as a model for implementing future low-cost point of care diagnostics.


Miniaturization Point-of-care Tuberculosis In-gel DNA amplification Isothermal 



Loop-mediated isothermal amplification


Real-time LAMP




Melting curve analysis


Linear regression of efficiency



This work was funded by AHFMR Interdisciplinary Team Grants Program.


  1. Andrade TPD, Lightner DV (2009) Development of a method for the detection of infectious myonecrosis virus by reverse-transcription loop-mediated isothermal amplification and nucleic acid lateral flow hybrid assay. J Fish Dis 32:911–924CrossRefGoogle Scholar
  2. Aryan E, Makvandi M, Farajzadeh A, Huygen K, Bifani P, Mousavi SL, Fateh A, Jelodar A, Gouya MM, Romano M (2010) A novel and more sensitive loop-mediated isothermal amplification assay targeting IS6110 for detection of Mycobacterium tuberculosis complex. Microbiol Res 165:211–220CrossRefGoogle Scholar
  3. Atrazhev A, Manage DP, Stickel AJ, Crabtree HJ, Pilarski LM, Acker JP (2010) In-gel technology for PCR genotyping and pathogen detection. Anal Chem 82:8079–8087CrossRefGoogle Scholar
  4. Boehme CC, Nabeta P, Henostroza G, Raqib R, Rahim Z, Gerhardt M, Sanga E, Hoelscher M, Notomi T, Hase T, Perkins MD (2007) Operational feasibility of using loop-mediated isothermal amplification for diagnosis of pulmonary tuberculosis in microscopy centers of developing countries. J Clin Microbiol 45:1936–1940CrossRefGoogle Scholar
  5. Chen Q, Li JA, Fang XE, Xiong W (2010) Detection of swine transmissible gastroenteritis coronavirus using loop-mediated isothermal amplification. Virol J 7:206CrossRefGoogle Scholar
  6. Cheng SJ, Chu YA, Chen ZY, Zhou GH (2009) Rapid and visual identification of swine influenza H1n1 by loop-mediated isothermal amplification. Progress on post-genome technologies. In: Proceedings of the 6th international forum on post-genome technologies (Ifpt'6), pp. 418–421Google Scholar
  7. Francois P, Tangomo M, Hibbs J, Bonetti EJ, Boehme CC, Notomi T, Perkins MD, Schrenzel J (2011) Robustness of a loop-mediated isothermal amplification reaction for diagnostic applications. FEMS Immunol Med Microbiol 62:41–48CrossRefGoogle Scholar
  8. Han FF, Ge BL (2010) Quantitative detection of Vibrio vulnificus in raw oysters by real-time loop-mediated isothermal amplification. Int J Food Microbiol 142:60–66CrossRefGoogle Scholar
  9. Hara-Kudo Y, Yoshino M, Kojima T, Ikedo M (2005) Loop-mediated isothermal amplification for the rapid detection of Salmonella. FEMS Microbiol Lett 253:155–161CrossRefGoogle Scholar
  10. Imai M, Ninomiya A, Minekawa H, Notomi T, Ishizaki T, Tu PV, Tien NTK, Tashiro M, Odagiri T (2007) Rapid diagnosis of H5N1 avian influenza virus infection by newly developed influenza H5 hemagglutinin gene-specific loop-mediated isothermal amplification method. J Virol Methods 141:173–180CrossRefGoogle Scholar
  11. Iwamoto T, Sonobe T, Hayashi K (2003) Loop-mediated isothermal amplification for direct detection of Mycobacterium tuberculosis complex, M-avium, and M-intracellulare in sputum samples. J Clin Microbiol 41:2616–2622CrossRefGoogle Scholar
  12. Kirschner DE, Young D, Flynn JL (2010) Tuberculosis: global approaches to a global disease. Curr Opin Biotechnol 21:524–531CrossRefGoogle Scholar
  13. Kuan CP, Wu MT, Lu YL, Huang HC (2010) Rapid detection of squash leaf curl virus by loop-mediated isothermal amplification. J Virol Methods 169:61–65CrossRefGoogle Scholar
  14. Le Roux CA, Kubo T, Grobbelaar AA, van Vuren PJ, Weyer J, Nel LH, Swanepoel R, Morita K, Paweska JT (2009) Development and evaluation of a real-time reverse transcription-loop-mediated isothermal amplification assay for rapid detection of rift valley fever virus in clinical specimens. J Clin Microbiol 47:645–651CrossRefGoogle Scholar
  15. Lee MF, Chen YH, Peng CF (2009) Evaluation of reverse transcription loop-mediated isothermal amplification in conjunction with ELISA-hybridization assay for molecular detection of Mycobacterium tuberculosis. J Microbiol Methods 76:174–180CrossRefGoogle Scholar
  16. Lin XA, Chen Y, Lu YY, Yan JY, Yan J (2009) Application of a loop-mediated isothermal amplification method for the detection of pathogenic Leptospira. Diagn Microbiol Infect Dis 63:237–242CrossRefGoogle Scholar
  17. Lucchi NW, Demas A, Narayanan J, Sumari D, Kabanywanyi A, Kachur SP, Barnwell JW, Udhayakumar V (2010) Real-time fluorescence loop mediated isothermal amplification for the diagnosis of malaria. PLoS ONE 5(10):e13733CrossRefGoogle Scholar
  18. Ma ZK, Lienhardt C, McIlleron H, Nunn AJ, Wang XX (2010) Global tuberculosis drug development pipeline: the need and the reality. Lancet 375:2100–2109CrossRefGoogle Scholar
  19. Magdalena J, Vachee A, Supply P, Locht C (1998) Identification of a new DNA region specific for members of Mycobacterium tuberculosis complex. J Clin Microbiol 36:937–943Google Scholar
  20. Manage DP, Lauzon J, Atrazhev A, Morrissey YC, Edwards AL, Stickel AJ, Crabtree HJ, Pabbaraju K, Zahariadis G, Yanow SK, Pilarski LM (2012) A miniaturized and integrated gel post platform for multiparameter PCR detection of herpes simplex viruses from raw genital swabs. Lab Chip 12:1664–1671CrossRefGoogle Scholar
  21. Mori Y, Nagamine K, Tomita N, Notomi T (2001) Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Res Commun 289:150–154CrossRefGoogle Scholar
  22. Mori Y, Kitao M, Tomita N, Notomi T (2004) Real-time turbidimetry of LAMP reaction for quantifying template DNA. J Biochem Biophys Methods 59:145–157CrossRefGoogle Scholar
  23. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28(12):e63CrossRefGoogle Scholar
  24. Pandey BD, Poudel A, Yoda T, Tamaru A, Oda N, Fukushima Y, Lekhak B, Risal B, Acharya B, Sapkota B, Nakajima C, Taniguchi T, Phetsuksiri B, Suzuki Y (2008) Development of an in-house loop-mediated isothermal amplification (LAMP) assay for detection of Mycobacterium tuberculosis and evaluation in sputum samples of Nepalese patients. J Med Microbiol 57:439–443CrossRefGoogle Scholar
  25. Peyrefitte CN, Boubis L, Coudrier D, Bouloy M, Grandadam M, Tolou HJ, Plumet S (2008) Real-time reverse-transcription loop-mediated isothermal amplification for rapid detection of rift valley fever virus. J Clin Microbiol 46:3653–3659CrossRefGoogle Scholar
  26. Rebrikov DV, Trofimov DY (2006) Real-time PCR: a review of approaches to data analysis. Appl Biochem Microbiol 42:455–463CrossRefGoogle Scholar
  27. Rutledge RG, Stewart D (2008) Critical evaluation of methods used to determine amplification efficiency refutes the exponential character of real-time PCR. BMC Mol Biol 9:96CrossRefGoogle Scholar
  28. Sudhakaran R, Mekata T, Kono T, Supamattaya K, Linh NTH, Sakai M, Itami T (2008) Rapid detection and quantification of infectious hypodermal and hematopoietic necrosis virus in whiteleg shrimp Penaeus vannamei using real-time loop-mediated isothermal amplification. Fish Pathol 43:170–173CrossRefGoogle Scholar
  29. Suzuki R, Ihira M, Enomoto Y, Yano H, Maruyama F, Emi N, Asano Y, Yoshikawa T (2010) Heat denaturation increases the sensitivity of the cytomegalovirus loop-mediated isothermal amplification method. Microbiol Immunol 54:466–470CrossRefGoogle Scholar
  30. Thierry D, Brissonnoel A, Vincentlevyfrebault V, Nguyen S, Guesdon JL, Gicquel B (1990) Characterization of a Mycobacterium-tuberculosis insertion-sequence, Is6110, and its application in diagnosis. J Clin Microbiol 28:2668–2673Google Scholar
  31. Tomita N, Mori Y, Kanda H, Notomi T (2008) Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc 3:877–882CrossRefGoogle Scholar
  32. Tsai SM, Chan KW, Hsu WL, Chang TJ, Wong ML, Wang CY (2009) Development of a loop-mediated isothermal amplification for rapid detection of orf virus. J Virol Methods 157:200–204CrossRefGoogle Scholar
  33. Uemura N, Makimura K, Onozaki M, Otsuka Y, Shibuya Y, Yazaki H, Kikuchi Y, Abe S, Kudoh S (2008) Development of a loop-mediated isothermal amplification method for diagnosing Pneumocystis pneumonia. J Med Microbiol 57:50–57CrossRefGoogle Scholar
  34. Van Embden JDA, Cave MD, Crawford JT, Dale JW, Eisenach KD, Gicquel B, Hermans P, Martin C, McAdam R, Shinnick TM, Small PM (1993) Strain identification of Mycobacterium-tuberculosis by DNA fingerprinting—recommendations for a standardized methodology. J Clin Microbiol 31:406–409Google Scholar
  35. Yamamura M, Makimura K, Ota Y (2009) Evaluation of a new rapid molecular diagnostic system for Plasmodium falciparum combined with DNA filter paper, loop-mediated isothermal amplification, and melting curve analysis. Jpn J Infect Dis 62:20–25Google Scholar
  36. Yoneyama T, Kiyohara T, Shimasaki N, Kobayashi G, Ota Y, Notomi T, Totsuka A, Wakita T (2007) Rapid and real-time detection of hepatitis A virus by reverse transcription loop-mediated isothermal amplification assay. J Virol Methods 145:162–168CrossRefGoogle Scholar
  37. Zaman K (2010) Tuberculosis: a global health problem. J Health Popul Nutr 28:111–113CrossRefGoogle Scholar
  38. Zhu RY, Zhang KX, Zhao MQ, Liu YH, Xu YY, Ju CM, Li B, Chen JD (2009) Use of visual loop-mediated isotheral amplification of rimM sequence for rapid detection of Mycobacterium tuberculosis and Mycobacterium bovis. J Microbiol Methods 78:339–343CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dammika P. Manage
    • 1
  • Linda Chui
    • 2
    • 3
  • Linda M. Pilarski
    • 1
    • 3
    Email author
  1. 1.Department of OncologyUniversity of Alberta and Cross Cancer InstituteEdmontonCanada
  2. 2.Provincial Laboratory for Public HealthEdmontonCanada
  3. 3.Department of Laboratory Medicine and PathologyUniversity of AlbertaEdmontonCanada

Personalised recommendations