Abstract
With the expanding role of microfluidics in biology and medicine, methodologies for on-chip fluid sample manipulation become increasingly important. While conventional methods of microfluidic actuation, such as pneumatic and piezoelectric valves, are well characterized and commonly used, they require bulky external setups and complex fabrication. To address the need for a simple microfluidic actuator, we introduce a hybrid device consisting of an electroactive polymer that controls the shape of a microfluidic channel with an applied bias voltage. The electro-adaptive microfluidic (EAM) device allowed tuning of fluidic resistances by up to 18.1 %. In addition, we have shown that the EAM device is able to clear microchannel blockages by actively expanding the channel cross section. Biocompatibility tests show the EAM device has little effect on cell viability within a voltage range and thus has the potential to be utilized in bio-microfluidic systems. All of these results indicate that this EAM device design may find use in applications from cell sorting and trapping and self-clearing channels, to the reduction of lab-on-a-chip complexity via tunable channel geometries.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bar-Cohen Y, Xue T, Shahinpoor M, Simpson JO, Smith J (1998) Low-mass muscle actuators using electroactive polymers (EAP). Proc SPIE 3324:32. doi:10.1117/12.316866
Bélanger MC, Marois Y (2001) Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: a review. J Biomed Mater Res 58(5):467–477. doi:10.1002/jbm.1043
Brochu P, Pei Q (2010) Advances in dielectric elastomers for actuators and artificial muscles. Macromol Rapid Commun 31:10–36. doi:10.1002/marc.200900425
Bruus H (2008) Theoretical microfluidics. Oxford University Press, New York
Carpi F, Chiarelli P, Mazzoldi A, De Rossi D (2003) Electromechanical characterisation of dielectric elastomer planar actuators: comparative evaluation of different electrode materials and different counterloads. Sens Actuators A 107(1):85–95. doi:10.1016/s0924-4247(03)00257-7
Chin CD, Linder V, Sia SK (2007) Lab-on-a-chip devices for global health: past studies and future opportunities. Lab Chip 18(7):41–57. doi:10.1039/b611455e
Chin CD, Linder V, Sia SK (2012) Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip. doi:10.1039/c2lc21204h
Folch A, Au AK, Lai H, Utela BR (2011) Microvalves and micropumps for BioMEMS. Micromachines 155(2):179–220. doi:10.3390/mi2020179
Goh JK (2009) Effects of wall compliance on pulsatile flow attenuation in microchannels. Dissertation, San Jose State University, San Jose
Gossett DR, Weaver WM, Mach AJ, Hur SC, Tse HTK, Lee W, Amini H, Di Carlo D (2010) Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem 397(8):3249–3267. doi:10.1007/s00216-010-3721-9
Graf NJ, Bowser MT (2008) A soft-polymer piezoelectric bimorph cantilever-actuated peristaltic micropump. Lab Chip 8:1664–1670. doi:10.1039/b805252b
Grover WH, Skelley AM, Liu CN, Lagally ET, Mathies RA (2003) Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices. Sensors Actuators B: Chem 89(3):315–323. doi:10.1016/s0925-4005(02)00468-9
Ha SM, Yuan W, Pei Q, Pelrine R, Stanford S (2006) Interpenetrating polymer networks for high-performance electroelastomer artificial muscles. Adv Mater 18(7):887–891. doi:10.1002/adma.200502437
Handique K, Burke DT, Mastrangelo CH, Burns MA (2001) On-chip thermopneumatic pressure for discrete drop pumping. Anal Chem 73(8):1831–1838. doi:10.1021/ac000711f
Heikali D, Di Carlo D (2010) A niche for microfluidics in portable hematology analyzers. J Assoc Lab Autom 15(4):319–328. doi:10.1016/j.jala.2010.02.005
Hur SC, Tse HTK, Di Carlo D (2010) Sheathless inertial cell ordering for extreme throughput flow cytometry. Lab Chip 10:274–280. doi:10.1039/b919495a
Jager E, Smela E, Inganas O (2000) Microfabricating conjugated polymer actuators. Science 290:1540–1545. doi:10.1126/science.290.5496.1540
Kim Y, Kuczenski B, LeDuc PR, Messner WC (2009) Modulation of fluidic resistance and capacitance for long-term, high-speed feedback control of a microfluidic interface. Lab Chip 9:2603–2609. doi:10.1039/b822423d
Koh SJA, Li T, Zhou J, Zhao X, Hong W, Zhu J, Suo Z (2011) Mechanisms of large actuation strain in dielectric elastomers. J Polym Sci, Part B: Polym Phys 49(7):504–515. doi:10.1002/polb.22223
Kornbluh R, Pelrine R, Pei Q, Heydt R, Stanford S, Oh S, Eckerle J (2002) Electroelastomers: applications of dielectric elastomer transducers for actuation generation and smart structures. Proc SPIE 4698:254–270. doi:10.1117/12.475072
Kovacs G, Düring L, Michel S, Terrasi G (2009) Stacked dielectric elastomer actuator for tensile force transmission. Sens Actuators A 155:299–307. doi:10.1016/j.sna.2009.08.027
Lee DE, Soper S, Wang W (2008) Design and fabrication of an electrochemically actuated microvalve. Microsyst Technol 14(9):1751–1756. doi:10.1007/s00542-008-0594-3
Liu W, Li L, Wang J, Tu Q, Ren L, Wang Y, Wang J (2012) Dynamic trapping and high-throughput patterning of cells using pneumatic microstructures in an integrated microfluidic device. Lab Chip 12:1702–1709. doi:10.1039/c2lc00034b
Loverich JJ, Kanno I, Kotera H (2006) Concepts for a new class of all-polymer micropumps. Lab Chip 6:1147–1154. doi:10.1039/b605525g
MacDonaldad J, Biyiklia K, Zugica B, Ebersolea G, Allora J (2005) Nucleation and growth of polymorphs of barbital on chemically modified surfaces in microfluidic channels. MRS Proc 901:0901-Ra07-04.1–0901-Ra07-04.7. doi:10.1557/PROC-0901-Ra07-04
Oh KW, Lee K, Ahn B, Furlani EP (2012) Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 12:515–545. doi:10.1039/c2lc20799k
Pan T, McDonald S, Kai EM, Ziaie B (2005) A magnetically driven PDMS micropump with ball check-valves. J Micromech Microeng 15(5):1021–1026. doi:10.1088/0960-1317/15/5/018
Pelrine RE, Kornbluh RD, Joseph JP (1998) Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens Actuators A 64(1):77–85. doi:10.1016/S0924-4247(97)01657-9
Pelrine R, Kornbluh R, Pei Q, Joesph J (2000a) High-speed electrically actuated elastomers with strain greater than 100%. Science 287(5454):836–839. doi:10.1126/science.287.5454.836
Pelrine R, Kornbluh R, Joseph J, Heydt R, Pei Q, Chiba S (2000b) High-field deformation of elastomeric dielectrics for actuators. Mater Sci Eng, C 11(2):89–100. doi:10.1016/S0928-4931(00)00128-4
Price AK, Anderson KM, Culbertson CT (2009) Demonstration of an integrated electroactive polymer actuator on a microfluidic electrophoresis device. Lab Chip 9:2076–2084. doi:10.1039/b823465e
Selvaganapathy P, Carlen ET, Mastrangelo CH (2003) Electrothermally actuated inline microfluidic valve. Sens Actuators A 104(3):275–282. doi:10.1016/s0924-4247(03)00030-x
Sollier E, Murray C, Maoddi P, Di Carlo D (2011) Rapid prototyping polymers for microfluidic devices and high pressure injections. Lab Chip 11(22):3752–3765. doi:10.1039/c1lc20514e
Sounart TL, Michalske TA, Zavadil KR (2005) Frequency-dependent electrostatic actuation in microfluidic MEMS. J Microelectromech Syst 14(1):125–133. doi:10.1109/JMEMS.2004.839006
Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463):113–116. doi:10.1126/science.288.5463.113
VanDelinder V, Groisman A (2006) Separation of plasma from whole human blood in continuous cross flow in a molded microfluidic device. Anal Chem 78(11):3765–3771. doi:10.1021/ac060042r
VanDelinder V, Groisman A (2007) Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow. Anal Chem 79:2023–2030. doi:10.1021/ac061659b
Vaughan ET, Weaver JC (2005) Molecular change signal-to-noise criteria for interpreting experiments involving exposure of biological systems to weakly interacting electromagnetic fields. Bioelectromagnetics 26(4):305–322. doi:10.1002/bem.20094
Vyawahare S, Sitaula S, Martin S, Adalian D, Scherer A (2008) Electronic control of elastomeric microfluidic circuits with shape memory actuators. Lab Chip 8:1530–1535. doi:10.1039/b804515a
Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373. doi:10.1038/nature05058
Willis PA, Hunt BD, White VE, Lee MC, Ikeda M, Bae S, Pelletier MJ, Grunthaner FJ (2007) Monolithic teflon® membrane valves and pumps for harsh chemical and low-temperature use. Lab Chip 7:1469–1474. doi:10.1039/b707892g
Wyser Y, Pelletier C, Lange J (2001) Predicting and determining the bending stiffness of thin films and laminates. Packag Technol Sci 14:97–108. doi:10.1002/pts.540
Xie J, Shih J, Lin Q, Yang B, Tai YC (2004) Surface micromachined electrostatically actuated micro peristaltic pump. Lab Chip 4:495–501. doi:10.1039/b403906h
Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH (2006) Microfluidic diagnostic technologies for global public health. Nature 442:2006. doi:10.1038/nature05064
Yu Z, Yuan W, Brochu P, Chen B, Liu Z, Pei Q (2009) Large-strain rigid-to-rigid deformation of bistable electroactive polymers. Appl Phys Lett 95(192904):1–3. doi:10.1063/1.3263729
Yu Z, Niu X, Brochu P, Yuan W, Li H, Chen B, Pei Q (2010) Bistable electroactive polymers (BSEP): large-strain actuation of rigid polymers. Proc SPIE 7642:76420C-1–76420C-9. doi:10.1117/12.847756
Yuan W, Hu L, Yu Z, Lam T, Biggs J, Ha S, Xi D, Chen B, Senesky MK, Grüner G, Pei Q (2008) Fault-tolerant dielectric elastomer actuators using single-walled carbon nanotube electrodes. Adv Mater 20(3):621–625. doi:10.1002/adma.200701018
Zhao X, Suo Z (2010) Theory of dielectric elastomers capable of giant deformation of actuation. Phys Rev Lett 104(178302):1–4. doi:10.1103/PhysRevLett.104.178302
Acknowledgments
The authors would like to thank Mohsen Khoshnevisan for his guidance and support and the Defense Advanced Research Projects Agency (DARPA) contract # N66001-10-1-4072 for financial support.
Author information
Authors and Affiliations
Corresponding authors
Additional information
C. Murray and D. McCoul contributed equally to the study.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Murray, C., McCoul, D., Sollier, E. et al. Electro-adaptive microfluidics for active tuning of channel geometry using polymer actuators. Microfluid Nanofluid 14, 345–358 (2013). https://doi.org/10.1007/s10404-012-1055-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10404-012-1055-y