Electro-adaptive microfluidics for active tuning of channel geometry using polymer actuators

Abstract

With the expanding role of microfluidics in biology and medicine, methodologies for on-chip fluid sample manipulation become increasingly important. While conventional methods of microfluidic actuation, such as pneumatic and piezoelectric valves, are well characterized and commonly used, they require bulky external setups and complex fabrication. To address the need for a simple microfluidic actuator, we introduce a hybrid device consisting of an electroactive polymer that controls the shape of a microfluidic channel with an applied bias voltage. The electro-adaptive microfluidic (EAM) device allowed tuning of fluidic resistances by up to 18.1 %. In addition, we have shown that the EAM device is able to clear microchannel blockages by actively expanding the channel cross section. Biocompatibility tests show the EAM device has little effect on cell viability within a voltage range and thus has the potential to be utilized in bio-microfluidic systems. All of these results indicate that this EAM device design may find use in applications from cell sorting and trapping and self-clearing channels, to the reduction of lab-on-a-chip complexity via tunable channel geometries.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Bar-Cohen Y, Xue T, Shahinpoor M, Simpson JO, Smith J (1998) Low-mass muscle actuators using electroactive polymers (EAP). Proc SPIE 3324:32. doi:10.1117/12.316866

    Google Scholar 

  2. Bélanger MC, Marois Y (2001) Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: a review. J Biomed Mater Res 58(5):467–477. doi:10.1002/jbm.1043

    Article  Google Scholar 

  3. Brochu P, Pei Q (2010) Advances in dielectric elastomers for actuators and artificial muscles. Macromol Rapid Commun 31:10–36. doi:10.1002/marc.200900425

    Article  Google Scholar 

  4. Bruus H (2008) Theoretical microfluidics. Oxford University Press, New York

  5. Carpi F, Chiarelli P, Mazzoldi A, De Rossi D (2003) Electromechanical characterisation of dielectric elastomer planar actuators: comparative evaluation of different electrode materials and different counterloads. Sens Actuators A 107(1):85–95. doi:10.1016/s0924-4247(03)00257-7

    Article  Google Scholar 

  6. Chin CD, Linder V, Sia SK (2007) Lab-on-a-chip devices for global health: past studies and future opportunities. Lab Chip 18(7):41–57. doi:10.1039/b611455e

    Article  Google Scholar 

  7. Chin CD, Linder V, Sia SK (2012) Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip. doi:10.1039/c2lc21204h

    Google Scholar 

  8. Folch A, Au AK, Lai H, Utela BR (2011) Microvalves and micropumps for BioMEMS. Micromachines 155(2):179–220. doi:10.3390/mi2020179

    Google Scholar 

  9. Goh JK (2009) Effects of wall compliance on pulsatile flow attenuation in microchannels. Dissertation, San Jose State University, San Jose

  10. Gossett DR, Weaver WM, Mach AJ, Hur SC, Tse HTK, Lee W, Amini H, Di Carlo D (2010) Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem 397(8):3249–3267. doi:10.1007/s00216-010-3721-9

    Article  Google Scholar 

  11. Graf NJ, Bowser MT (2008) A soft-polymer piezoelectric bimorph cantilever-actuated peristaltic micropump. Lab Chip 8:1664–1670. doi:10.1039/b805252b

    Article  Google Scholar 

  12. Grover WH, Skelley AM, Liu CN, Lagally ET, Mathies RA (2003) Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices. Sensors Actuators B: Chem 89(3):315–323. doi:10.1016/s0925-4005(02)00468-9

    Article  Google Scholar 

  13. Ha SM, Yuan W, Pei Q, Pelrine R, Stanford S (2006) Interpenetrating polymer networks for high-performance electroelastomer artificial muscles. Adv Mater 18(7):887–891. doi:10.1002/adma.200502437

    Article  Google Scholar 

  14. Handique K, Burke DT, Mastrangelo CH, Burns MA (2001) On-chip thermopneumatic pressure for discrete drop pumping. Anal Chem 73(8):1831–1838. doi:10.1021/ac000711f

    Article  Google Scholar 

  15. Heikali D, Di Carlo D (2010) A niche for microfluidics in portable hematology analyzers. J Assoc Lab Autom 15(4):319–328. doi:10.1016/j.jala.2010.02.005

    Article  Google Scholar 

  16. Hur SC, Tse HTK, Di Carlo D (2010) Sheathless inertial cell ordering for extreme throughput flow cytometry. Lab Chip 10:274–280. doi:10.1039/b919495a

    Article  Google Scholar 

  17. Jager E, Smela E, Inganas O (2000) Microfabricating conjugated polymer actuators. Science 290:1540–1545. doi:10.1126/science.290.5496.1540

    Article  Google Scholar 

  18. Kim Y, Kuczenski B, LeDuc PR, Messner WC (2009) Modulation of fluidic resistance and capacitance for long-term, high-speed feedback control of a microfluidic interface. Lab Chip 9:2603–2609. doi:10.1039/b822423d

    Article  Google Scholar 

  19. Koh SJA, Li T, Zhou J, Zhao X, Hong W, Zhu J, Suo Z (2011) Mechanisms of large actuation strain in dielectric elastomers. J Polym Sci, Part B: Polym Phys 49(7):504–515. doi:10.1002/polb.22223

    Article  Google Scholar 

  20. Kornbluh R, Pelrine R, Pei Q, Heydt R, Stanford S, Oh S, Eckerle J (2002) Electroelastomers: applications of dielectric elastomer transducers for actuation generation and smart structures. Proc SPIE 4698:254–270. doi:10.1117/12.475072

    Article  Google Scholar 

  21. Kovacs G, Düring L, Michel S, Terrasi G (2009) Stacked dielectric elastomer actuator for tensile force transmission. Sens Actuators A 155:299–307. doi:10.1016/j.sna.2009.08.027

    Article  Google Scholar 

  22. Lee DE, Soper S, Wang W (2008) Design and fabrication of an electrochemically actuated microvalve. Microsyst Technol 14(9):1751–1756. doi:10.1007/s00542-008-0594-3

    Article  Google Scholar 

  23. Liu W, Li L, Wang J, Tu Q, Ren L, Wang Y, Wang J (2012) Dynamic trapping and high-throughput patterning of cells using pneumatic microstructures in an integrated microfluidic device. Lab Chip 12:1702–1709. doi:10.1039/c2lc00034b

    Article  Google Scholar 

  24. Loverich JJ, Kanno I, Kotera H (2006) Concepts for a new class of all-polymer micropumps. Lab Chip 6:1147–1154. doi:10.1039/b605525g

    Article  Google Scholar 

  25. MacDonaldad J, Biyiklia K, Zugica B, Ebersolea G, Allora J (2005) Nucleation and growth of polymorphs of barbital on chemically modified surfaces in microfluidic channels. MRS Proc 901:0901-Ra07-04.1–0901-Ra07-04.7. doi:10.1557/PROC-0901-Ra07-04

    Google Scholar 

  26. Oh KW, Lee K, Ahn B, Furlani EP (2012) Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 12:515–545. doi:10.1039/c2lc20799k

    Article  Google Scholar 

  27. Pan T, McDonald S, Kai EM, Ziaie B (2005) A magnetically driven PDMS micropump with ball check-valves. J Micromech Microeng 15(5):1021–1026. doi:10.1088/0960-1317/15/5/018

    Article  Google Scholar 

  28. Pelrine RE, Kornbluh RD, Joseph JP (1998) Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens Actuators A 64(1):77–85. doi:10.1016/S0924-4247(97)01657-9

    Article  Google Scholar 

  29. Pelrine R, Kornbluh R, Pei Q, Joesph J (2000a) High-speed electrically actuated elastomers with strain greater than 100%. Science 287(5454):836–839. doi:10.1126/science.287.5454.836

    Article  Google Scholar 

  30. Pelrine R, Kornbluh R, Joseph J, Heydt R, Pei Q, Chiba S (2000b) High-field deformation of elastomeric dielectrics for actuators. Mater Sci Eng, C 11(2):89–100. doi:10.1016/S0928-4931(00)00128-4

    Article  Google Scholar 

  31. Price AK, Anderson KM, Culbertson CT (2009) Demonstration of an integrated electroactive polymer actuator on a microfluidic electrophoresis device. Lab Chip 9:2076–2084. doi:10.1039/b823465e

    Article  Google Scholar 

  32. Selvaganapathy P, Carlen ET, Mastrangelo CH (2003) Electrothermally actuated inline microfluidic valve. Sens Actuators A 104(3):275–282. doi:10.1016/s0924-4247(03)00030-x

    Article  Google Scholar 

  33. Sollier E, Murray C, Maoddi P, Di Carlo D (2011) Rapid prototyping polymers for microfluidic devices and high pressure injections. Lab Chip 11(22):3752–3765. doi:10.1039/c1lc20514e

    Article  Google Scholar 

  34. Sounart TL, Michalske TA, Zavadil KR (2005) Frequency-dependent electrostatic actuation in microfluidic MEMS. J Microelectromech Syst 14(1):125–133. doi:10.1109/JMEMS.2004.839006

    Article  Google Scholar 

  35. Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463):113–116. doi:10.1126/science.288.5463.113

    Article  Google Scholar 

  36. VanDelinder V, Groisman A (2006) Separation of plasma from whole human blood in continuous cross flow in a molded microfluidic device. Anal Chem 78(11):3765–3771. doi:10.1021/ac060042r

    Article  Google Scholar 

  37. VanDelinder V, Groisman A (2007) Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow. Anal Chem 79:2023–2030. doi:10.1021/ac061659b

    Article  Google Scholar 

  38. Vaughan ET, Weaver JC (2005) Molecular change signal-to-noise criteria for interpreting experiments involving exposure of biological systems to weakly interacting electromagnetic fields. Bioelectromagnetics 26(4):305–322. doi:10.1002/bem.20094

    Article  Google Scholar 

  39. Vyawahare S, Sitaula S, Martin S, Adalian D, Scherer A (2008) Electronic control of elastomeric microfluidic circuits with shape memory actuators. Lab Chip 8:1530–1535. doi:10.1039/b804515a

    Article  Google Scholar 

  40. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373. doi:10.1038/nature05058

    Article  Google Scholar 

  41. Willis PA, Hunt BD, White VE, Lee MC, Ikeda M, Bae S, Pelletier MJ, Grunthaner FJ (2007) Monolithic teflon® membrane valves and pumps for harsh chemical and low-temperature use. Lab Chip 7:1469–1474. doi:10.1039/b707892g

    Article  Google Scholar 

  42. Wyser Y, Pelletier C, Lange J (2001) Predicting and determining the bending stiffness of thin films and laminates. Packag Technol Sci 14:97–108. doi:10.1002/pts.540

    Article  Google Scholar 

  43. Xie J, Shih J, Lin Q, Yang B, Tai YC (2004) Surface micromachined electrostatically actuated micro peristaltic pump. Lab Chip 4:495–501. doi:10.1039/b403906h

    Article  Google Scholar 

  44. Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH (2006) Microfluidic diagnostic technologies for global public health. Nature 442:2006. doi:10.1038/nature05064

    Article  Google Scholar 

  45. Yu Z, Yuan W, Brochu P, Chen B, Liu Z, Pei Q (2009) Large-strain rigid-to-rigid deformation of bistable electroactive polymers. Appl Phys Lett 95(192904):1–3. doi:10.1063/1.3263729

    Google Scholar 

  46. Yu Z, Niu X, Brochu P, Yuan W, Li H, Chen B, Pei Q (2010) Bistable electroactive polymers (BSEP): large-strain actuation of rigid polymers. Proc SPIE 7642:76420C-1–76420C-9. doi:10.1117/12.847756

    Google Scholar 

  47. Yuan W, Hu L, Yu Z, Lam T, Biggs J, Ha S, Xi D, Chen B, Senesky MK, Grüner G, Pei Q (2008) Fault-tolerant dielectric elastomer actuators using single-walled carbon nanotube electrodes. Adv Mater 20(3):621–625. doi:10.1002/adma.200701018

    Article  Google Scholar 

  48. Zhao X, Suo Z (2010) Theory of dielectric elastomers capable of giant deformation of actuation. Phys Rev Lett 104(178302):1–4. doi:10.1103/PhysRevLett.104.178302

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mohsen Khoshnevisan for his guidance and support and the Defense Advanced Research Projects Agency (DARPA) contract # N66001-10-1-4072 for financial support.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Qibing Pei or Dino Di Carlo.

Additional information

C. Murray and D. McCoul contributed equally to the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 138 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Murray, C., McCoul, D., Sollier, E. et al. Electro-adaptive microfluidics for active tuning of channel geometry using polymer actuators. Microfluid Nanofluid 14, 345–358 (2013). https://doi.org/10.1007/s10404-012-1055-y

Download citation

Keywords

  • Electro-adaptive microfluidics (EAMs)
  • Microchannel actuation
  • Electroactive polymer
  • Dielectric elastomer
  • Polymer actuator
  • Microelectromechanical systems (MEMS)