Microfluidics and Nanofluidics

, Volume 14, Issue 1–2, pp 299–308 | Cite as

Slip in nanoscale shear flow: mechanisms of interfacial friction

  • Xin Yong
  • Lucy T. Zhang
Research Paper


The atomistic mechanism of fluid–solid interfacial friction as the basis of slip is still not fully understood. This study explores the interfacial friction mechanisms and their interplay with the nanoscale slip behavior using non-equilibrium molecular dynamics simulations. Our results show that there is an abrupt jump of slip length at a critical shear rate, corresponding to the transition from “defect slip” at low shear rates to “collective slip” at high shear rates. Here, we identified two mechanisms of interfacial friction: surface potential and collision mechanisms. Their impacts on slip are elaborated through a quantitative scaling estimation and our results show that both mechanisms contribute to the defect slip at low shear rates, while the collision mechanism dominates the collective slip at high shear rates. We also verify the importance of the bulk viscous heating via a comparison among different thermostat strategies.


Slip Friction Nanofluidics Molecular dynamics 



This work was partially supported by NRC (NRC-38-09-954) and NSF (CMMI-0928448) and utilized the Rensselaer Polytechnic Institute Computational Center for Nanotechnology Innovations Blue Gene/L. We gratefully acknowledge the discussion with Dr. Mark O. Robbins.


  1. Asproulis N, Drikakis D (2011) Wall-mass effects on hydrodynamic boundary slip. Phys Rev E 84:031504CrossRefGoogle Scholar
  2. Barrat JL, Bocquet L (1999) Influence of wetting properties on hydrodynamic boundary conditions at a fluid/solid interface. Faraday Discuss 112:119CrossRefGoogle Scholar
  3. Barrat JL, Hansen JP (2003) Basic concepts for simple and complex liquids. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  4. Bernardi S, Todd B, Searles DJ (2010) Thermostating highly confined fluid. J Chem Phys 132:244706CrossRefGoogle Scholar
  5. Bocquet L, Barrat JL (2007) Flow boundary conditions from nano-to micro-scalesm. Soft Matter 3:685CrossRefGoogle Scholar
  6. Cottin-Bizonne C, Cross B, Steinberger A, Charlaix E (2005) Boundary slip on smooth hydrophobic surfaces: intrinsic effects and possible artifacts. Phys Rev Lett 94:056102CrossRefGoogle Scholar
  7. Español P, Warren P (1995) Statistical mechanics of dissipative particle dynamics. Europhys Lett 30(4):191CrossRefGoogle Scholar
  8. Hoogerbrugge P, Keolman J (1992) Simulating microscopic hydrodynamics phenomena with dissipative particle dynamics. Europhys Lett 19(3):155CrossRefGoogle Scholar
  9. Khare R, de Pablo J, Yethiraj A (1997) Molecular simulation and continuum mechanics study of simple fluids in non-isothermal planar couette flows. J Chem Phys 107(7):2589CrossRefGoogle Scholar
  10. Lauga E, Brenner MP, Stone HA (2007) Microfluidics: The no-slip boundary condition In: Tropea C, Yarin A, Foss JF (eds) Handbook of experimental fluid dynamic, chap 19. Springer, New-YorkGoogle Scholar
  11. Liem SY, Brown D, Clarke JH (1992) Investigation of the homogeneous-shear nonequilibrium-molecular-dynamics method. Phys Rev A 45:3706CrossRefGoogle Scholar
  12. Martini A, Hsu HY, Patankar NA, Lichter S (2008a) Slip at high shear rates. Phys Rev Lett 100:206001CrossRefGoogle Scholar
  13. Martini A, Roxin A, Snurr R, Wang Q, Lichter S (2008b) Molecular mechanims of liquid slip. J Fluid Mech 600:257zbMATHCrossRefGoogle Scholar
  14. Maxwell JC (1879) On stresses in rarified gases arising from inequalities of temperature. Philos Trans R Soc Lond 170:231zbMATHCrossRefGoogle Scholar
  15. Neto C, Evans DR, Bonaccurso E, Butt H, Craig VS (2005) Boundary slip in Newtonian liquids: a review of experimental studies Rep Progr Phys 68:2859CrossRefGoogle Scholar
  16. Niavarani A, Priezjev NV (2008) Slip boundary conditions for shear flow of polymer melts past atomically at surfaces. Phys Rev E 77:041606CrossRefGoogle Scholar
  17. Pahlavan AA, Freund JB (2011) Effect of solid properties on slip at a fluid-solid interface. Phys Rev E 83:021602CrossRefGoogle Scholar
  18. Pastorino C, Kreer T, Müller M, Binder K (2007) Comparison of dissipative particle dynamics and langevin thermostats for out-of-equilibrium simulations of polymeric systems. Phys Rev E 76:026706CrossRefGoogle Scholar
  19. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1zbMATHCrossRefGoogle Scholar
  20. Priezjev NV (2007a) Effect of surface roughness on rate-dependent slip in simple fluids. J Chem Phys 127:144708CrossRefGoogle Scholar
  21. Priezjev NV (2007b) Rate-dependent slip boundary conditions for simple fluids. Phys Rev E 75:051605CrossRefGoogle Scholar
  22. Priezjev NV (2009) Shear rate threshold for the boundary slip in dense polymer films. Phys Rev E 80:031608CrossRefGoogle Scholar
  23. Priezjev NV (2010) Relationship between induced fluid structure and boundary slip in nanoscale polymer films. Phys Rev E 82:051603CrossRefGoogle Scholar
  24. Priezjev NV, Troian SM (2004) Molecular origin and dynamic behavior of slip in the sheared polymer films. Phys Rev Lett 92(1):018302CrossRefGoogle Scholar
  25. Sendner C, Horinek D, Bocquet L, Netz RR (2009) Interfacial water at hydrophobic and hydrophilic surfaces: Slip,viscosity, and diffusion. Langmuir 25:10768CrossRefGoogle Scholar
  26. Smith ED, Robbins MO (1996) Friction on adsorbed monolayers. Phys Rev B 54:8252CrossRefGoogle Scholar
  27. Soddemann T, Dünweg B, Kremer K (2003) Dissipative particle dynamics: a useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations. Phys Rev E 68:046702CrossRefGoogle Scholar
  28. Steele WA (1973) The physical interaction of gases with crystalline solids. Surf Sci 36:317CrossRefGoogle Scholar
  29. Thompson PA, Robbins MO (1990a) Origin of stick-slip motion in boundary lubrication. Phys Rev A 41(12):6830CrossRefGoogle Scholar
  30. Thompson PA (1990b) Shear flow near solids: epitaxial order and flow boundary conditions. Robbins MO Science 250(4982):792CrossRefGoogle Scholar
  31. Thompson PA, Troian SM (1997) A general boundary condition for liquid flow at solid surfaces. Nature 389:360CrossRefGoogle Scholar
  32. Voronov RS, Papavassiliou DV, Lee LL (2006) Boundary slip and wetting properties of interfaces: correlation of the contact angle with the slip length. J Chem Phys 124:204701CrossRefGoogle Scholar
  33. Voronov RS, Papavassiliou DV, Lee LL (2007) Slip length and contact angle over hydrophobic surfaces. Chem Phys Lett 44:273CrossRefGoogle Scholar
  34. Yong X, Zhang LT (2010) Investigating liquid-solid interfacial phenomena in a couette flow at nanoscale. Phys Rev E 82:056313CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Mechanical, Aerospace and Nuclear EngineeringRensselaer Polytechnic InstituteTroyUSA
  2. 2.Department of Chemical and Petroleum EngineeringUniversity of PittsburghPittsburghUSA

Personalised recommendations