Skip to main content
Log in

Design and characterization of a platform for thermal actuation of up to 588 microfluidic valves

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript


In this paper, we describe a large-scale microfluidic valve platform for thermally actuated phase change (PC) microvalves. PC microvalves can be actuated by heat sources such as ohmic resistors, which can be highly integrated resulting in dense arrays of individually addressable microfluidic valves. We present a custom-made electronic platform with custom-written control software that allows controlling a total of 588 individually addressable resistors each of which can be used as the actuator for a separate PC valve. The platform is demonstrated with direct PC microvalve (the simplest example of a PC valve) where working fluid and phase change material are the same media. We present experimental results for single valve setups as well as for a 24 microvalve setup showing the scalability of the system. Furthermore, we demonstrate that precise and individual ‘per-resistor’ temperature profiles are required for valve actuation in order to decrease thermal latency and ensure that the time required for switching the valve state is independent from the “thermal history” (i.e. the duration of the previous valve state) of the valve. To the best of our knowledge, there is no such platform described in the literature, which offers an equal potential for individual valve operation (potentially up to 588 individual valves) as presented in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others


  • Bevan CD, Mutton IM (1995) Freeze-thaw flow management—a novel concept for high-performance liquid-chromatography, capillary electrophoresis, electrochromatography and associated techniques. J Chromatogr A 697(1–2):541–548. doi:10.1016/0021-9673(94)00954-8

    Google Scholar 

  • Cho S, Kang DK, Choo J, deMello AJ, Chang SI (2011) Recent advances in microfluidic technologies for biochemistry and molecular biology. BMB Rep 44(11):705–712. doi:10.5483/BMBRep.2011.44.11.705

    Article  Google Scholar 

  • Colin B, Mandrand B (1999) Vanne statique à congélation, et enceinte de traitement contrôlée par au moins une telle vanne. France Patent 01(09):1999

    Google Scholar 

  • Eddington DT, Beebe DJ (2004) Flow control with hydrogels. Adv Drug Deliv Rev 56(2):199–210. doi:10.1016/j.addr.2003.08.013

    Article  Google Scholar 

  • Grodrian A, Metze J, Henkel T, Martin K, Roth M, Kohler JM (2004) Segmented flow generation by chip reactors for highly parallelized cell cultivation. Biosens Bioelectron 19(11):1421–1428. doi:10.1016/j.bios.2003.12.021

    Article  Google Scholar 

  • Gui L, Yu BY, Ren CL, Huissoon JP (2011) Microfluidic phase change valve with a two-level cooling/heating system. Microfluid Nanofluid 10(2):435–445. doi:10.1007/s10404-010-0683-3

    Article  Google Scholar 

  • Kabei N, Kosuda M, Kagamibuchi H, Tashiro R, Mizuno H, Ueda Y, Tsuchiya K (1997) A thermal-expansion-type microactuator with paraffin as the expansive material (basic performance of a prototype linear actuator). JSME Int J Ser C Mech Syst Mach Elem Manuf 40(4):736–742

    Google Scholar 

  • Lee CC, Sui GD, Elizarov A, Shu CYJ, Shin YS, Dooley AN, Huang J, Daridon A, Wyatt P, Stout D, Kolb HC, Witte ON, Satyamurthy N, Heath JR, Phelps ME, Quake SR, Tseng HR (2005) Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics. Science 310(5755):1793–1796. doi:10.1126/science.1118919

    Article  Google Scholar 

  • Liu RH, Bonanno J, Yang JN, Lenigk R, Grodzinski P (2004) Single-use, thermally actuated paraffin valves for microfluidic applications. Sens Actuators B Chem 98(2–3):328–336. doi:10.1016/j.snb.2003.09.037

    Article  Google Scholar 

  • Melin J, Quake SR (2007) Microfluidic large-scale integration: the evolution of design rules for biological automation. Annu Rev Biophys 36:213–231. doi:10.1146/annurev.biophys.36.040306.132646

    Google Scholar 

  • Neumann C, Voigt A, Rapp BE (2011) A large scale thermal microfluidic valve platform. In: Landers JP, Herr A, Juncker D, Pamme N, Bienvenue J (eds) The 15th international conference on miniaturized systems for chemistry and life sciences (μTAS 2011), Seattle, USA, 2011. pp 428–430

  • Oh KW, Ahn CH (2006) A review of microvalves. J Micromech Microeng 16(5):R13–R39. doi:10.1088/0960-1317/16/5/r01

    Article  Google Scholar 

  • Rapp BE, Carneiro L, Laenge K, Rapp M (2009) An indirect microfluidic flow injection analysis (FIA) system allowing diffusion free pumping of liquids by using tetradecane as intermediary liquid. Lab Chip 9(2):354–356. doi:10.1039/b815690e

    Article  Google Scholar 

  • Rapp BE, Duttenhofer T, Laenge K (2010) 20/100/400-channel chemically inert, reversibel parallel microfluidic connector as generic chip-to-world interface. In: Verpoorte S, Andersson-Swahn H, Emnéus J, Pamme N (eds) The 14th international conference on miniaturized systems for chemistry and life sciences (μTAS 2010), Groningen, The Netherlands, 2010. pp 1121–1123

  • Richter A, Howitz S, Kuckling D, Arndt KF (2004) Influence of volume phase transition phenomena on the behavior of hydrogel-based valves. Sens Actuators B Chem 99(2–3):451–458. doi:10.1016/j.snb.2003.12.014

    Article  Google Scholar 

  • Schulte TH, Bardell RL, Weigl BH (2002) Microfluidic technologies in clinical diagnostics. Clin Chim Acta 321(1–2):1–10. doi:10.1016/s0009-8981(02)00093-1

    Article  Google Scholar 

  • Takagi Y, Kojima Y, Mitani K (1995) Apparatus for and method of controlling the opening and closing of channel for liquid. Jpn Patent 05(04):1995

    Google Scholar 

  • Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298(5593):580–584. doi:10.1126/science.1076996

    Article  Google Scholar 

  • Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463):113–116. doi:10.1126/science.288.5463.113

    Article  Google Scholar 

  • Waldbaur A, Rapp H, Lange K, Rapp BE (2011) Let there be chip-towards rapid prototyping of microfluidic devices: one-step manufacturing processes. Anal Methods 3(12):2681–2716. doi:10.1039/c1ay05253e

    Article  Google Scholar 

  • Yang B, Lin Q (2009) A latchable phase-change microvalve with integrated heaters. J Microelectromech Syst 18(4):860–867. doi:10.1109/jmems.2009.2024806

    Article  Google Scholar 

Download references


This work was funded in part by the ‚Concept for the Future’ of Karlsruhe Institute of Technology (KIT) within the framework of the German Excellence Initiative, a Max-Buchner Research fellowship (DECHEMA, Gesellschaft für Chemische Technik und Biotechnologie e. V., Grant #2676) as well as a travelling grant provided by the Karlsruhe House of Young Scientists (KHYS).

Author information

Authors and Affiliations


Corresponding author

Correspondence to B. E. Rapp.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 835 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neumann, C., Voigt, A., Pires, L. et al. Design and characterization of a platform for thermal actuation of up to 588 microfluidic valves. Microfluid Nanofluid 14, 177–186 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: