Advertisement

Design and characterization of a platform for thermal actuation of up to 588 microfluidic valves

  • 553 Accesses

  • 11 Citations

Abstract

In this paper, we describe a large-scale microfluidic valve platform for thermally actuated phase change (PC) microvalves. PC microvalves can be actuated by heat sources such as ohmic resistors, which can be highly integrated resulting in dense arrays of individually addressable microfluidic valves. We present a custom-made electronic platform with custom-written control software that allows controlling a total of 588 individually addressable resistors each of which can be used as the actuator for a separate PC valve. The platform is demonstrated with direct PC microvalve (the simplest example of a PC valve) where working fluid and phase change material are the same media. We present experimental results for single valve setups as well as for a 24 microvalve setup showing the scalability of the system. Furthermore, we demonstrate that precise and individual ‘per-resistor’ temperature profiles are required for valve actuation in order to decrease thermal latency and ensure that the time required for switching the valve state is independent from the “thermal history” (i.e. the duration of the previous valve state) of the valve. To the best of our knowledge, there is no such platform described in the literature, which offers an equal potential for individual valve operation (potentially up to 588 individual valves) as presented in this work.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Bevan CD, Mutton IM (1995) Freeze-thaw flow management—a novel concept for high-performance liquid-chromatography, capillary electrophoresis, electrochromatography and associated techniques. J Chromatogr A 697(1–2):541–548. doi:10.1016/0021-9673(94)00954-8

  2. Cho S, Kang DK, Choo J, deMello AJ, Chang SI (2011) Recent advances in microfluidic technologies for biochemistry and molecular biology. BMB Rep 44(11):705–712. doi:10.5483/BMBRep.2011.44.11.705

  3. Colin B, Mandrand B (1999) Vanne statique à congélation, et enceinte de traitement contrôlée par au moins une telle vanne. France Patent 01(09):1999

  4. Eddington DT, Beebe DJ (2004) Flow control with hydrogels. Adv Drug Deliv Rev 56(2):199–210. doi:10.1016/j.addr.2003.08.013

  5. Grodrian A, Metze J, Henkel T, Martin K, Roth M, Kohler JM (2004) Segmented flow generation by chip reactors for highly parallelized cell cultivation. Biosens Bioelectron 19(11):1421–1428. doi:10.1016/j.bios.2003.12.021

  6. Gui L, Yu BY, Ren CL, Huissoon JP (2011) Microfluidic phase change valve with a two-level cooling/heating system. Microfluid Nanofluid 10(2):435–445. doi:10.1007/s10404-010-0683-3

  7. Kabei N, Kosuda M, Kagamibuchi H, Tashiro R, Mizuno H, Ueda Y, Tsuchiya K (1997) A thermal-expansion-type microactuator with paraffin as the expansive material (basic performance of a prototype linear actuator). JSME Int J Ser C Mech Syst Mach Elem Manuf 40(4):736–742

  8. Lee CC, Sui GD, Elizarov A, Shu CYJ, Shin YS, Dooley AN, Huang J, Daridon A, Wyatt P, Stout D, Kolb HC, Witte ON, Satyamurthy N, Heath JR, Phelps ME, Quake SR, Tseng HR (2005) Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics. Science 310(5755):1793–1796. doi:10.1126/science.1118919

  9. Liu RH, Bonanno J, Yang JN, Lenigk R, Grodzinski P (2004) Single-use, thermally actuated paraffin valves for microfluidic applications. Sens Actuators B Chem 98(2–3):328–336. doi:10.1016/j.snb.2003.09.037

  10. Melin J, Quake SR (2007) Microfluidic large-scale integration: the evolution of design rules for biological automation. Annu Rev Biophys 36:213–231. doi:10.1146/annurev.biophys.36.040306.132646

  11. Neumann C, Voigt A, Rapp BE (2011) A large scale thermal microfluidic valve platform. In: Landers JP, Herr A, Juncker D, Pamme N, Bienvenue J (eds) The 15th international conference on miniaturized systems for chemistry and life sciences (μTAS 2011), Seattle, USA, 2011. pp 428–430

  12. Oh KW, Ahn CH (2006) A review of microvalves. J Micromech Microeng 16(5):R13–R39. doi:10.1088/0960-1317/16/5/r01

  13. Rapp BE, Carneiro L, Laenge K, Rapp M (2009) An indirect microfluidic flow injection analysis (FIA) system allowing diffusion free pumping of liquids by using tetradecane as intermediary liquid. Lab Chip 9(2):354–356. doi:10.1039/b815690e

  14. Rapp BE, Duttenhofer T, Laenge K (2010) 20/100/400-channel chemically inert, reversibel parallel microfluidic connector as generic chip-to-world interface. In: Verpoorte S, Andersson-Swahn H, Emnéus J, Pamme N (eds) The 14th international conference on miniaturized systems for chemistry and life sciences (μTAS 2010), Groningen, The Netherlands, 2010. pp 1121–1123

  15. Richter A, Howitz S, Kuckling D, Arndt KF (2004) Influence of volume phase transition phenomena on the behavior of hydrogel-based valves. Sens Actuators B Chem 99(2–3):451–458. doi:10.1016/j.snb.2003.12.014

  16. Schulte TH, Bardell RL, Weigl BH (2002) Microfluidic technologies in clinical diagnostics. Clin Chim Acta 321(1–2):1–10. doi:10.1016/s0009-8981(02)00093-1

  17. Takagi Y, Kojima Y, Mitani K (1995) Apparatus for and method of controlling the opening and closing of channel for liquid. Jpn Patent 05(04):1995

  18. Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298(5593):580–584. doi:10.1126/science.1076996

  19. Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463):113–116. doi:10.1126/science.288.5463.113

  20. Waldbaur A, Rapp H, Lange K, Rapp BE (2011) Let there be chip-towards rapid prototyping of microfluidic devices: one-step manufacturing processes. Anal Methods 3(12):2681–2716. doi:10.1039/c1ay05253e

  21. Yang B, Lin Q (2009) A latchable phase-change microvalve with integrated heaters. J Microelectromech Syst 18(4):860–867. doi:10.1109/jmems.2009.2024806

Download references

Acknowledgments

This work was funded in part by the ‚Concept for the Future’ of Karlsruhe Institute of Technology (KIT) within the framework of the German Excellence Initiative, a Max-Buchner Research fellowship (DECHEMA, Gesellschaft für Chemische Technik und Biotechnologie e. V., Grant #2676) as well as a travelling grant provided by the Karlsruhe House of Young Scientists (KHYS).

Author information

Correspondence to B. E. Rapp.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 835 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Neumann, C., Voigt, A., Pires, L. et al. Design and characterization of a platform for thermal actuation of up to 588 microfluidic valves. Microfluid Nanofluid 14, 177–186 (2013). https://doi.org/10.1007/s10404-012-1036-1

Download citation

Keywords

  • Microfluidics
  • Microfluidic valves
  • Thermal actuation
  • Phase change