Microdevices for extensional rheometry of low viscosity elastic liquids: a review

Abstract

Extensional flows and the underlying stability/instability mechanisms are of extreme relevance to the efficient operation of inkjet printing, coating processes and drug delivery systems, as well as for the generation of micro droplets. The development of an extensional rheometer to characterize the extensional properties of low viscosity fluids has therefore stimulated great interest of researchers, particularly in the last decade. Microfluidics has proven to be an extraordinary working platform and different configurations of potential extensional microrheometers have been proposed. In this review, we present an overview of several successful designs, together with a critical assessment of their capabilities and limitations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

References

  1. Alves MA (2008) Design a cross-slot flow channel for extensional viscosity measurements. AIP Conf Proc 1027:240–242

    Article  Google Scholar 

  2. Anna SL, McKinley GH (2008) Effect of a controlled pre-deformation history on extensional viscosity of dilute polymer solutions. Rheol Acta 47:841–859

    Article  Google Scholar 

  3. Anna SL, Rogers C, McKinley GH (1999) On controlling the kinematics of a filament stretching rheometer using a real-time active control mechanism. J Non Newton Fluid Mech 87:307–335

    MATH  Article  Google Scholar 

  4. Anna SL, McKinley GH, Nguyen DA, Sridhar T, Muller S, Huang J, James DF (2001) An interlaboratory comparison of measurements from filament-stretching rheometers using common test fluids. J Rheol 45(1):83–114

    Article  Google Scholar 

  5. Ardekani AM, Sharma V, McKinley GH (2010) Dynamics of bead formation, filament thinning and breakup in weakly viscoelastic jets. J Fluid Mech 665:46–56

    MathSciNet  MATH  Article  Google Scholar 

  6. Arratia PE, Thomas CC, Diorio J, Gollub JP (2006) Elastic instabilities of polymer solutions in cross-channel flow. Phys Rev Lett 96:144502

    Article  Google Scholar 

  7. Arratia PE, Gollub JP, Durian DJ (2008) Polymeric filament thinning and breakup in microchannels. Phys Rev E 77:036309

    Article  Google Scholar 

  8. Babcock HP, Teixeira RE, Hur JS, Shaqfeh ESG (2003) Visualization of molecular fluctuations near the critical point of the coil-stretch transition in polymer elongation. Macromolecules 36:4544–4548

    Article  Google Scholar 

  9. Balducci AG, Tang J, Doyle PS (2008) Electrophoretic stretching of dna molecules in cross-slot nanoslit channels. Macromolecules 41:9914–9918

    Article  Google Scholar 

  10. Bandalusena HCH, Zimmerman WB, Rees JM (2009) Microfluidic rheometry of a polymer solution by micron resolution particle image velocimetry: a model validation study. Meas Sci Technol 20:115404

    Article  Google Scholar 

  11. Banpurkar AG, Duits MHG, van den Ende D, Mugele F (2009) Electrowetting of complex fluids: perspectives for rheometry on chip. Langmuir 25:1245–1252

    Article  Google Scholar 

  12. Bänsch E, Berg CP, Ohlhoff A (2004) Uniaxial extensional flows in liquid bridges. J Fluid Mech 521:353–379

    MathSciNet  MATH  Article  Google Scholar 

  13. Barnes HA, Hutton JF, Walters K (1993) An introduction to rheology. Rheology series, 3rd edn. Elsevier, The Netherlands

    Google Scholar 

  14. Bazilevsky A, Entov V, Rozhkov A (1990) Liquid filament microrheometer and some of its applications. In: Oliver DR (ed) Proceedings of the third European rheology conference. Elsevier, The Netherlands, pp 41–43

    Google Scholar 

  15. Becherer P, Morozov AN, van Saarloos W (2008) Scaling of singular structures in extensional flow of dilute polymer solutions. J Non Newton Fluid Mech 153:183–190

    Article  Google Scholar 

  16. Beni G, Hackwood S (1981) Electro-wetting displays. Appl Phys Lett 38(4):207–209

    Article  Google Scholar 

  17. Berge B (1993) Electrocapillarité et mouillage de films isolants par l’eau. Comptes rendus de l’ Academie des sciences Seŕie 2 317(2):157–163

    Google Scholar 

  18. Bhattacharjee PK, McDonnell AG, Prabhakar R, Yeo LY, Friend J (2011) Extensional flow of low-viscosity fluids in capillary bridges formed by pulsed surface acoustic wave jetting. New J Phys 13:023005

    Article  Google Scholar 

  19. Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymer liquids. Fluid mechanics, vol 1, 2nd edn. Wiley, USA

    Google Scholar 

  20. Campo-Deaño L, Clasen C (2010) The slow retraction method (SRM) for the determination of ultra-short relaxation times in capillary breakup extensional rheometry experiments. J Non Newton Fluid Mech 165:1688–1699

    Article  Google Scholar 

  21. Campo-Deaño L, Galindo-Rosales FJ, Pinho FT, Alves MA, Oliveira MSN (2011) Flow of low viscosity boger fluids through a microfluidic hyperbolic contraction. J Non Newton Fluid Mech 166:1286–1296

    Article  Google Scholar 

  22. Cubaud T, Mason TG (2009) High-viscosity fluids threads in weakly diffusive microfluidic systems. New J Phys 11:075029

    Article  Google Scholar 

  23. Dontula P, Pasquali M, Scriven LE, Macosko CW (1997) Can extensional viscosity be measured with opposed-nozzle devices. Rheol Acta 36:429–448

    Google Scholar 

  24. Dukhin A, Zelenev A (2010) Rheology: shear, extensional, longitudinal. Sci Topics. http://www.scitopics.com/Rheology_shear_extensional_longitudinal.html (accessed 20 June 2012)

  25. Dylla-Spears R, Townsend JE, Jen-Jacobson L, Sohn LL, Muller SJ (2010) Single-molecule sequence detection via microfluidic planar extensional flow at a stagnation point. Lab Chip 10:1543–1549

    Article  Google Scholar 

  26. Erni P, Varagnat M, Clasen C, Crest J, McKinley GH (2011) Microrheometry of sub-nanolitre biopolymer samples: non-newtonian flow phenomena of carnivorous plant mucilage. Soft Matter 7:10889

    Article  Google Scholar 

  27. Franck A (2011) The ARES-EVF: option for measuring extensional viscosity of polymer melts. http://www.tainstruments.com/pdf/literature/APN002_V2_ARES_EVF_to_measure_elongation_viscosity.pdf (accessed 20 June 2012)

  28. Fuller GG, Cathey CA, Hubbard B, Zebrowski BE (1987) Extensional viscosity measurements for low-viscosity fluids. J Rheol 31:235–249

    Article  Google Scholar 

  29. Funami T (2011) Next target for food hydrocolloid studies: texture design of foods using hydrocolloid technology. Food Hydrocolloids 25:1904–1914

    Article  Google Scholar 

  30. Gaudet S, McKinley GH (1998) Extensional deformation of non-Newtonian liquid bridges. Comput Mech 21:461–476

    MATH  Article  Google Scholar 

  31. Göttfert (2011) Elongational testing—rheotens and haul-off. http://www.goettfert.com/images/stories/downloads/produkte/Rheotens_71-97_en.pdf (accessed 20 June 2012)

  32. Guillot P, Panizza P, Salmon JP, Joanicot M, Colin A (2006) Viscosimeter on a microfluidic chip. Langmuir 22:6438–6445

    Article  Google Scholar 

  33. Guillot P, Moulin T, Kotitz RMG, Dodge A, Joanicot M, Colin A, Bruneau CH, Colin T (2008) Towards a continuous microfluidic rheometer. Microfluid Nanofluid 5:619–630

    Article  Google Scholar 

  34. Gupta RK, Sridhar T (1988) Rheological Measurements. In: Clegg D, Collyer AA (eds) Elsevier, The Netherlands

  35. Haward SJ (2010) Buckling instabilities in dilute polymer solution elastic strands. Rheol Acta 49:1219–1225

    Article  Google Scholar 

  36. Haward SJ, Odell JA, Berry M, Hall T (2011) Extensional rheology of human saliva. Rheol Acta 50:869–879

    Article  Google Scholar 

  37. Haward SJ, Ober TJ, Oliveira MSN, Alves MA, McKinley GH (2012a) Extensional rheology and elastic instabilities of a wormlike micellar solution in a microfluidic cross-slot device. Soft Matter 8:536–555

    Article  Google Scholar 

  38. Haward SJ, Oliveira MSN, Alves MA, McKinley GH (2012b) Optimized cross-slot flow geometry for microfluidic extensional rheometry. Phys Rev Lett (submitted)

  39. Hermansky CG, Boger DV (1995) Opposing-jet viscometry of fluids with viscosity approaching that of water. J Non Newton Fluid Mech 56:1–14

    Article  Google Scholar 

  40. Hsieh SS, Huang YC (2008) Passive mixing in micro-channels with geometric variations through μPIV and μLIF measurements. J Micromech Microeng 18:065017

    Article  Google Scholar 

  41. Hudson SD, Phelan FR, Handler MD, Cabral JT, Migler KB, Amis EJ (2004) Microfluidic analog of the four-roll mill. Appl Phys Lett 85(2):335–337

    Article  Google Scholar 

  42. Husny J, Cooper-White JJ (2006) The effect of elasticity on drop creation in T-shaped microchannels. J Non Newton Fluid Mech 137:121–136

    Article  Google Scholar 

  43. Kojic N, Bico J, Clasen C, McKinley GH (2006) Ex vivo rheology of spider silk. J Exp Biol 209:4355–4362

    Article  Google Scholar 

  44. Kumari N, Garimella SV (2011) Electrowetting-induced dewetting transitions on superhydrophobic surfaces. Langmuir 27:10342–10346

    Article  Google Scholar 

  45. Lagnado RR, Leal LG (1990) Visualization of three-dimensional flow in a four-roll mill. Exp Fluids 9:25–32

    Article  Google Scholar 

  46. Lee JS, Dylla-Spears R, Teclemariam NP, Muller SJ (2007) Microfluidic four-roll mill for all flow types. Appl Phys Lett 90:074103

    Article  Google Scholar 

  47. Lee W, Walker LM, Anna SL (2011) Competition between viscoelasticity and surfactant dynamics in flow focusing microfluidics. Macromol Mater Eng 296:203–213

    Article  Google Scholar 

  48. Lin YY, Lin CW, Yang LJ, Wang AB (2007) Micro-viscometer based on electrowetting on dielectric. Electrochim Acta 52:2876–2883

    Article  Google Scholar 

  49. Link DR, Anna SL, Weitz DA, Stone HA (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92(5):054503

    Article  Google Scholar 

  50. Lippmann G (1875) Relations entre les phénomènes électriques et capillaires. Ann Chim Phys 5:494

    Google Scholar 

  51. Macosko CW (1994) Rheology: principles, measurements, and applications. Wiley, USA

    Google Scholar 

  52. Maia JM, Covas JA, Nóbrega JM, Dias TF, Alves FE (1999) Measuring uniaxial extensional viscosity using a modified rotational rheometer. J Non Newton Fluid Mech 80:183–197

    MATH  Article  Google Scholar 

  53. Matta JE, Tytus RP (1990) Liquid stretching using a falling cylinder. J Non Newton Fluid Mech 35:215–229

    Article  Google Scholar 

  54. McKinley GH (2005) Visco-elasto-capillary thinning and break-up of complex fluids. In: Binding DM, Walters K (eds) Rheology reviews. The British Society of Rheology

  55. McKinley GH, Hall NR (2011a) Shear history extensional rheology experiment II (SHERE II). http://issresearchproject.grc.nasa.gov/MSG/SHERE_II/ (accessed 20 June 2012)

  56. McKinley GH, Hall NR (2011b) Shear history extensional rheology experiment (SHERE). http://issresearchproject.grc.nasa.gov/MSG/SHERE/ (accessed 20 June 2012)

  57. McKinley GH, Sridhar T (2002) Filament-stretching rheometry of complex fluids. Annu Rev Fluid Mech 34:375–415

    MathSciNet  Article  Google Scholar 

  58. McKinley GH, Tripathi A (2000) How to extract the Newtonian viscosity from capillary breakup measurements in a filament rheometer. J Rheol 44(3):653–671

    Article  Google Scholar 

  59. McKinley GH, Brauner O, Yao M (2001) Kinematics of filament stretching in dilute and concentrated polymer solutions. Korea Austral J Rheol 13(1):29–35

    Google Scholar 

  60. Meissner J (1985a) Experimental aspects in polymer melt elongational rheometry. Chem Eng Commun 33:159–180

    Article  Google Scholar 

  61. Meissner J (1985b) Rheometry of polymer melts. Annu Rev Fluid Mech 17:45–64

    Article  Google Scholar 

  62. Mugele F, Baret JC (2005) Electrowetting: from basics to applications. J Phys Condens Matter 17:R705–R774

    Article  Google Scholar 

  63. Münsted H (1979) New universal extensional rheometer for polymer melts. Measurements on a polystyrene sample. J Rheol 23(4):421–436

    Article  Google Scholar 

  64. Nelson WC, Kavehpour HP, Kim CJ (2010) A micro extensional filament rheometer enabled by EWOD. In: IEEE 23rd international conference on micro electro mechanical systems (MEMS), pp 75–78

  65. Nelson WC, Kavehpour HP, Kim CJ (2011) A miniature capillary breakup extensional rheometer by electrostatically assisted generation of liquid filaments. Lab Chip 11:2424–2431

    Article  Google Scholar 

  66. Ng SL, Mun RP, Boger DV, James DF (1996) Extensional viscosity measurements of dilute polymer solutions of various polymers. J Non Newton Fluid Mech 65:291–298

    Article  Google Scholar 

  67. Niedzwiedz K, Arnolds O, Willenbacher N, Brummer R (2009) How to characterize yield stress fluids with capillary breakup extensional rheometry (CaBER). Appl Rheol 19(4):41969

    Google Scholar 

  68. Niedzwiedz K, Buggisch H, Willenbacher N (2010) Extensional rheology of concentrated emulsions as probed by capillary breakup elongational rheometry (CaBER). Rheol Acta 49:1103–1116

    Article  Google Scholar 

  69. Nijenhuis K, McKinley GH, Spiegelberg S, Barnes HA, Aksel N, Heymann L, Odell JA (2007) Springer handbook on experimental fluid mechanics, Chap 9. Non-Newtonian flows. Springer, Berlin

    Google Scholar 

  70. Odell JA, Carrington SA (2006) Extensional flow oscillatory rheometry. J Non Newton Fluid Mech 137:110–120

    Article  Google Scholar 

  71. Oliveira MSN, McKinley GH (2005) Iterated stretching and multiple beads-on-a-string phenomena in dilute solutions of highly extensible flexible polymers. Phys Fluids 17:071704

    Article  Google Scholar 

  72. Oliveira MSN, Yeh R, McKinley GH (2006) Iterated stretching, extensional rheology and formation of beads-on-a-string structures in polymer solutions. J Non Newton Fluid Mech 137:137–148

    Article  Google Scholar 

  73. Oliveira MSN, Alves MA, Pinho FT, McKinley GH (2007a) Viscous flow through microfabricated hyperbolic contractions. Exp Fluids 43:437–451

    Article  Google Scholar 

  74. Oliveira MSN, Oliveira PJ, Pinho FT, Alves MA (2007b) Effect of contraction ratio upon viscoelastic flow in contractions: the axisymmetric case. J Non Newton Fluid Mech 147:92–108

    MATH  Article  Google Scholar 

  75. Oliveira MSN, Alves MA, Pinho FT (2008a) Extensional effects in viscoelastic fluid flow through a micro-scale double cross-slot. AIP Conf Proc 1027:982–984

    Article  Google Scholar 

  76. Oliveira MSN, Rodd LE, McKinley GH, Alves MA (2008b) Simulations of extensional flow in microrheometric devices. Microfluid Nanofluid 5:809–826

    Article  Google Scholar 

  77. Oliveira MSN, Pinho FT, Poole RJ, Oliveira PJ, Alves MA (2009) Purely-elastic flow asymmetries in flow focusing devices. J Non Newton Fluid Mech 160:31–39

    Article  Google Scholar 

  78. Oliveira MSN, Alves MA, Pinho FT (2012) Transport and mixing in laminar flows: from microfluidics to oceanic currents, Chap 6. Microfluidic flows of viscoelastic fluids. Wiley, New York

    Google Scholar 

  79. Padmanabhan M (1995) Measurement of extensional viscosity of viscoelastic liquid foods. J Food Eng 25:311–327

    Article  Google Scholar 

  80. Padmanabhan M, Bhattacharya M (1993) Planar extensional viscosity of corn meal dough. J Food Eng 18:389–411

    Article  Google Scholar 

  81. Pathak JA, Hudson SD (2006) Rheo-optics of equilibrium polymer solutions: wormlike micelles in elongational flow in a microfluidic cross-slot. Macromolecules 39:8782–8792

    Article  Google Scholar 

  82. Perkins TT, Smith DE, Chu S (1997) Single polymer dynamics in an elongation flow. Science 314:216–221

    Google Scholar 

  83. Petrie CJS (1997) Three-dimensional presentation of extensional flow data. J Non Newton Fluid Mech 70:205–218

    Article  Google Scholar 

  84. Petrie CJS (2006) Extensional viscosity: a critical discussion. J Non Newton Fluid Mech 137:15–23

    MATH  Article  Google Scholar 

  85. Phelan FR Jr, Hudson SD, Handler MD (2005) Fluid dynamics analysis of channel flow geometries for materials characterization in microfluidic devices. Rheol Acta 45:59–71

    Article  Google Scholar 

  86. Pipe C, McKinley GH (2009) Microfluidic rheometry. Mech Res Commun 36:110–120

    Article  Google Scholar 

  87. Pipe C, Majmudar TS, McKinley GH (2008) High shear rate viscometry. Rheol Acta 47:621–642

    Article  Google Scholar 

  88. Pollack MG, Fair RB, Shenderov AD (2010) Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl Phys Lett 77:1725–1727

    Article  Google Scholar 

  89. Poole RJ, Alves MA, Oliveira PJ (2007) Purely elastic flow asymmetries. Phys Rev Lett 99:164503

    Article  Google Scholar 

  90. Remmelgas J, Singh P, Leal LG (1999) Computational studies of nonlinear elastic dumbbell models of boger fluids in a cross-slot flow. J Non Newton Fluid Mech 88:31–61

    MATH  Article  Google Scholar 

  91. Ríos S, Díaz J, Galindo A, Soto E, Calderas F, Mena B (2002) Instrumentation and start up of a new elongational rheometer with preshearing history. Rev Sci Instrum 73:3007–3011

    Article  Google Scholar 

  92. Roche M, Kellay H, Stone HA (2011) Heterogeneity and the role of normal stresses during the extensional thinning of non-Brownian shear-thickening fluids. Phys Rev Lett 107:34503

    Article  Google Scholar 

  93. Rodd LE, Scott TP, Boger DV, Cooper-White JJ, McKinley GH (2005a) The inertio-elastic planar entry flow of low-viscosity elastic fluids in micro-fabricated geometries. J Non Newtonian Fluid Mech 129:1–22

    Article  Google Scholar 

  94. Rodd LE, Scott TP, Cooper-White JJ, McKinley GH (2005b) Capillary break-up rheometry of low-viscosity elastic fluids. Appl Rheol 15:12–27

    Google Scholar 

  95. Rodd LE, Cooper-White JJ, Boger DV, McKinley GH (2007) The role of elasticity number in the entry flow of dilute polymer solutions in micro-fabricated contraction geometries. J Non Newtonian Fluid Mech 143:170–191

    Article  Google Scholar 

  96. Rothstein JP (2008) Strong flows of viscoelastic wormlike micelle solutions. In: Binding DM, Walters K (eds) Rheology reviews. The British Society of Rheology

  97. Rothstein JP, McKinley GH (1999) Extensional flow of a polystyrene boger fluid through a 4:1:4 axisymmetric contraction/expansion. J Non Newton Fluid Mech 86:61–88

    MATH  Article  Google Scholar 

  98. Rothstein JP, McKinley GH (2001) The axisymmetric contraction–expansion: the role of extensional rheology on vortex growth dynamics and the enhanced pressure drop. J Non Newton Fluid Mech 98:33–63

    MATH  Article  Google Scholar 

  99. Sattler R, Wagner C, Eggers J (2008) Blistering pattern and formation of nanofibers in capillary thinning of polymer solutions. Phys Rev Lett 100:164502

    Article  Google Scholar 

  100. Schultz WW, Davis SH (1982) One-dimensional liquid fibers. J Rheol 26(4):331–345

    MATH  Article  Google Scholar 

  101. Schweizer T (2000) The uniaxial elongational rheometer rme—six years of experience. Rheol Acta 39:428–443

    Article  Google Scholar 

  102. Sentmanat M, Wang BN, McKinley GH (2005) Measuring the transient extensional rheology of polyethylene melts using the ser universal testing platform. J Rheol 49(3):585–606

    Article  Google Scholar 

  103. Shaqfeh ESG (2005) The dynamics of single-molecule dna in flow. J Non Newton Fluid Mech 130:1–28

    Article  Google Scholar 

  104. Song JH, Evans R, Lin YY, Hsu BN, Fair RB (2009) A scaling model for electrowetting-on-dielectric microfluidic actuators. Microfluid Nanofluid 7:75–89

    Article  Google Scholar 

  105. Soulages J, Le Goupil F, Hostettler J, McKinley GH (2009a) An opposed-nozzle fixture for measuring the extensional properties of low viscosity liquids using a conventional controlled strain rheometer. In: Co A (ed) The Society of Rheology. 81st annual meeting program and abstracts, p 115

  106. Soulages J, Oliveira MSN, Sousa PC, Alves MA, McKinley GH (2009b) Investigating the stability of viscoelastic stagnation flows in t-shaped microchannels. J Non Newton Fluid Mech 163:9–24

    Article  Google Scholar 

  107. Sousa PC, Coelho PM, Oliveira MSN, Alves MA (2011) Laminar flow in three-dimensional square–square expansion. J Non Newton Fluid Mech 166:1033–1048

    Article  Google Scholar 

  108. Squires TM, Mason TG (2010) Fluid mechanics of microrheology. Annu Rev Fluid Mech 42:413–438

    Article  Google Scholar 

  109. Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977–1026

    Article  Google Scholar 

  110. Sridhar T (2000) From rheometry to rheology. Korea Austral Rheol J 12(1):39–53

    MathSciNet  Google Scholar 

  111. Tan MK, Friend JR, Yeo LY (2009) Interfacial jetting phenomena induced by focusing surface vibrations. Phys Rev Lett 103:024501

    Article  Google Scholar 

  112. Tanner RI (1988) Pressure-hole errors—an alternative approach. J Non Newtonian Fluid Mech 28:309–318

    MATH  Article  Google Scholar 

  113. Tanyeri M, Johnson-Chavarria EM, Schroeder CM (2010) Hydrodynamic trap for single particles and cells. Appl Phys Lett 96:224101

    Article  Google Scholar 

  114. Tanyeri M, Ranka M, Sittipolkul N, Schroeder CM (2011) A microfluidic-based hydrodynamic trap: design and implementation. Lab Chip 11:1786–1794

    Article  Google Scholar 

  115. Taylor GI (1934) The formation of emulsions in definable fields of flow. Proc Roy Soc Lond Ser A 146:501–523

    Article  Google Scholar 

  116. Trouton FT (1906) On the coefficient of viscous traction and its relation to that of viscosity. Proc Roy Soc Lond 77:426–440

    Google Scholar 

  117. Wang J, James DF (2011) Lubricated extensional flow of viscoelastic fluid in a convergent microchannel. J Rheol 55:1103–1126

    Article  Google Scholar 

  118. Whitesides GM (2006) The origins and future of microfluidics. Nature 42:368–370

    Article  Google Scholar 

  119. Zheng R, Tanner RI, Fan XJ (2011) Injection molding: integration of theory and modeling methods. Springer, Berlin

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Fundação para a Ciência e a Tecnologia (FCT), COMPETE and FEDER for financial support through projects PTDC/EME-MFE/099109/2008, PTDC/EME-MFE/114322/2009, PTDC/EQU-FTT/118716/2010 and the scholarship SFRH/BPD /69663/2010. The authors also thank Dr. Rob Poole (University of Liverpool) for helpful comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. J. Galindo-Rosales.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Galindo-Rosales, F.J., Alves, M.A. & Oliveira, M.S.N. Microdevices for extensional rheometry of low viscosity elastic liquids: a review. Microfluid Nanofluid 14, 1–19 (2013). https://doi.org/10.1007/s10404-012-1028-1

Download citation

Keywords

  • Extensional flow
  • Filament stretching
  • Filament thinning
  • Diluted polymer solution
  • Rheometry
  • Microfluidics
  • Extensional viscosity
  • Viscoelasticity