Microfluidics and Nanofluidics

, Volume 13, Issue 5, pp 749–760 | Cite as

Bead-based polymerase chain reaction on a microchip

  • John P. Hilton
  • ThaiHuu Nguyen
  • Mihaela Barbu
  • Renjun Pei
  • Milan Stojanovic
  • Qiao Lin
Research Paper

Abstract

We present a bead-based approach to microfluidic polymerase chain reaction (PCR), enabling fluorescent detection and sample conditioning in a single microchamber. Bead-based PCR, while not extensively investigated in microchip format, has been used in a variety of bioanalytical applications in recent years. We leverage the ability of bead-based PCR to accumulate fluorescent labels following DNA amplification to explore a novel DNA detection scheme on a microchip. The microchip uses an integrated microheater and temperature sensor for rapid control of thermal cycling temperatures, while the sample is held in a microchamber fabricated from (poly)dimethylsiloxane and coated with Parylene. The effects of key bead-based PCR parameters, including annealing temperature and concentration of microbeads in the reaction mixture, are studied to achieve optimized device sensitivity and detection time. The device is capable of detecting a synthetically prepared section of the Bordetella pertussis genome in as few as 10 temperature cycles with times as short as 15 min. We then demonstrate the use of the procedure in an integrated device; capturing, amplifying, detecting, and purifying template DNA in a single microfluidic chamber. These results show that this method is an effective method of DNA detection which is easily integrated in a microfluidic device to perform additional steps such as sample pre-conditioning.

Keywords

Polymerase chain reaction Bead DNA capture DNA purification Microfluidics 

References

  1. Adessi C, Matton G, Ayala G, Turcatti G, Mermod J-J, Mayer P, Kawashima E (2000) Solid phase DNA amplification: characterisation of primer attachment and amplification mechanisms. Nucleic Acids Res 28(20):e87. doi:10.1093/nar/28.20.e87 CrossRefGoogle Scholar
  2. Bettiol S, Thompson MJ, Roberts NW, Perera R, Heneghan CJ, Harnden A (2010) Symptomatic treatment of the cough in whooping cough. Cochrane Database Syst Rev (1). doi:10.1002/14651858.CD003257.pub3
  3. Beyor N, Yi LN, Seo TS, Mathies RA (2009) Integrated capture, concentration, polymerase chain reaction, and capillary electrophoretic analysis of pathogens on a chip. Anal Chem 81(9):3523–3528. doi:10.1021/ac900060r CrossRefGoogle Scholar
  4. Brownie J, Shawcross S, Theaker J, Whitcombe D, Ferrie R, Newton C, Little S (1997) The elimination of primer–dimer accumulation in PCR. Nucleic Acids Res 25(16):3235–3241. doi:10.1093/nar/25.16.3235 CrossRefGoogle Scholar
  5. Diehl F, Li M, Dressman D, He YP, Shen D, Szabo S, Diaz LA, Goodman SN, David KA, Juhl H, Kinzler KW, Vogelstein B (2005) Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci USA 102(45):16368–16373. doi:10.1073/pnas.0507904102 CrossRefGoogle Scholar
  6. Diehl F, Li M, He YP, Kinzler KW, Vogelstein B, Dressman D (2006) BEAMing: single-molecule PCR on microparticles in water-in-oil emulsions. Nat Methods 3(7):551–559. doi:10.1038/nmeth898 CrossRefGoogle Scholar
  7. Diehl F, Schmidt K, Durkee KH, Moore KJ, Goodman SN, Shuber AP, Kinzler KW, Vogelstein B (2008) Analysis of mutations in DNA isolated from plasma and stool of colorectal cancer patients. Gastroenterology 135(2):489–498. doi:10.1053/j.gastro.2008.05.039 CrossRefGoogle Scholar
  8. Dressman D, Yan H, Traverso G, Kinzler KW, Vogelstein B (2003) Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci USA 100(15):8817–8822. doi:10.1073/pnas.1133470100 CrossRefGoogle Scholar
  9. Easley CJ, Karlinsey JM, Bienvenue JM, Legendre LA, Roper MG, Feldman SH, Hughes MA, Hewlett EL, Merkel TJ, Ferrance JP, Landers JP (2006) A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability. Proc Natl Acad Sci USA 103(51):19272–19277. doi:10.1073/pnas.0604663103 CrossRefGoogle Scholar
  10. Erickson D, Li D, Krull UJ (2003) Modeling of DNA hybridization kinetics for spatially resolved biochips. Anal Biochem 317(2):186–200. doi:10.1016/s0003-2697(03)00090-3 CrossRefGoogle Scholar
  11. Ferguson BS, Buchsbaum SF, Swensen JS, Hsieh K, Lou XH, Soh HT (2009) Integrated microfluidic electrochemical DNA sensor. Anal Chem 81(15):6503–6508. doi:10.1021/ac900923e CrossRefGoogle Scholar
  12. Gan R, Yamanaka Y, Kojima T, Nakano H (2008) Microbeads display of proteins using emulsion PCR and cell-free protein synthesis. Biotechnol Prog 24(5):1107–1114. doi:10.1002/btpr.43 CrossRefGoogle Scholar
  13. Glare EM, Paton JC, Premier RR, Lawrence AJ, Nisbet IT (1990) Analysis of a repetitive DNA-sequence from Bordetella pertussis and its application to the diagnosis of pertussis using the polymerase chain reaction. J Clin Microbiol 28(9):1982–1987Google Scholar
  14. González M, Argaraña CE, Fidelio GD (1999) Extremely high thermal stability of streptavidin and avidin upon biotin binding. Biomol Eng 16(1–4):67–72. doi:10.1016/s1050-3862(99)00041-8 CrossRefGoogle Scholar
  15. Harris S, Jones DB (1997) Optimisation of the polymerase chain reaction. Br J Biomed Sci 54(3):166–173Google Scholar
  16. He QS, Mertsola J, Soini H, Skurnik M, Ruuskanen O, Viljanen MK (1993) Comparison of polymerase chain-reaction with culture and enzyme-immunoassay for diagnosis of pertussis. J Clin Microbiol 31(3):642–645Google Scholar
  17. Hiep HM, Kerman K, Endo T, Saito M, Tamiya E (2010) Nanostructured biochip for label-free and real-time optical detection of polymerase chain reaction. Anal Chim Acta 661(1):111–116. doi:10.1016/j.aca.2009.12.006 CrossRefGoogle Scholar
  18. Hilton JP, Nguyen TH, Pei RJ, Stojanovic M, Lin Q (2011) A microfluidic affinity sensor for the detection of cocaine. Sens Actuator A Phys 166(2):241–246. doi:10.1016/j.sna.2009.12.006 CrossRefGoogle Scholar
  19. Holmberg A, Blomstergren A, Nord O, Lukacs M, Lundeberg J, Uhlen M (2005) The biotin-streptavidin interaction can be reversibly broken using water at elevated temperatures. Electrophoresis 26(3):501–510. doi:10.1002/elps.200410070 CrossRefGoogle Scholar
  20. Kojima T, Takei Y, Ohtsuka M, Kawarasaki Y, Yamane T, Nakano H (2005) PCR amplification from single DNA molecules on magnetic beads in emulsion: application for high-throughput screening of transcription factor targets. Nucleic Acids Res 33(17):e150. doi:10.1093/nar/gni143 CrossRefGoogle Scholar
  21. Krawczyk MJ, Kulakowski K (2005) Off-lattice simulation of the solid phase DNA amplification. Comput Phys Commun 170(2):131–136. doi:10.1016/j.cpc.2005.03.108 CrossRefGoogle Scholar
  22. Kumaresan P, Yang CJ, Cronier SA, Blazej RG, Mathies RA (2008) High-throughput single copy DNA amplification and cell analysis in engineered nanoliter droplets. Anal Chem 80(10):3522–3529. doi:10.1021/ac800327d CrossRefGoogle Scholar
  23. Lee JY, Kim JJ, Park TH (2003) Miniaturization of polymerase chain reaction. Biotechnol Bioprocess Eng 8(4):213–220MathSciNetCrossRefGoogle Scholar
  24. Lermo A, Campoy S, Barbe J, Hernandez S, Alegret S, Pividori MI (2007) In situ DNA amplification with magnetic primers for the electrochemical detection of food pathogens. Biosens Bioelectron 22(9–10):2010–2017. doi:10.1016/j.bios.2006.08.048 CrossRefGoogle Scholar
  25. Li Y, Zhang C, Xing D (2011) Fast identification of foodborne pathogenic viruses using continuous-flow reverse transcription-PCR with fluorescence detection. Microfluid Nanofluid 10(2):367–380. doi:10.1007/s10404-010-0675-3 CrossRefGoogle Scholar
  26. Lien KY, Lee SH, Tsai TJ, Chen TY, Lee GB (2009) A microfluidic-based system using reverse transcription polymerase chain reactions for rapid detection of aquaculture diseases. Microfluid Nanofluid 7(6):795–806. doi:10.1007/s10404-009-0438-1 CrossRefGoogle Scholar
  27. Liu RH, Yang JN, Lenigk R, Bonanno J, Grodzinski P (2004) Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal Chem 76(7):1824–1831. doi:10.1021/ac0353029 CrossRefGoogle Scholar
  28. Lonneborg A, Sharma P, Stougaard P (1995) Construction of subtractive cDNA library using magnetic beads and PCR. PCR Methods Appl 4(4):S168–S176CrossRefGoogle Scholar
  29. Mercier J-F, Slater GW (2005) Solid phase DNA amplification: a Brownian dynamics study of crowding effects. Biophys J 89(1):32–42. doi:10.1529/biophysj.104.051904 CrossRefGoogle Scholar
  30. Mercier JF, Slater GW, Mayer P (2003) Solid phase DNA amplification: a simple Monte Carlo lattice model. Biophys J 85(4):2075–2086CrossRefGoogle Scholar
  31. Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. In: Ray W (ed) Methods in enzymology, vol 155. Academic Press, New York, pp 335–350Google Scholar
  32. Nazarenko I, Pires R, Lowe B, Obaidy M, Rashtchian A (2002) Effect of primary and secondary structure of oligodeoxyribonucleotides on the fluorescent properties of conjugated dyes. Nucleic Acids Res 30(9):2089–2095. doi:10.1093/nar/30.9.2089 CrossRefGoogle Scholar
  33. Northrup MA, Benett B, Hadley D, Landre P, Lehew S, Richards J, Stratton P (1998) A miniature analytical instrument for nucleic acids based on micromachined silicon reaction chambers. Anal Chem 70(5):918–922CrossRefGoogle Scholar
  34. Probert WS, Ely J, Schrader K, Atwell J, Nossoff A, Kwan S (2008) Identification and evaluation of new target sequences for specific detection of Bordetella pertussis by real-time PCR. J Clin Microbiol 46(10):3228–3231. doi:10.1128/jcm.00386-08 CrossRefGoogle Scholar
  35. Roper MG, Easley CJ, Landers JP (2005) Advances in polymerase chain reaction on microfluidic chips. Anal Chem 77(12):3887–3893. doi:10.1021/ac050756m CrossRefGoogle Scholar
  36. Roux KH (1995) Optimization and troubleshooting in PCR. Genome Res 4(5):S185–S194CrossRefGoogle Scholar
  37. Shendure J, Porreca GJ, Reppas NB, Lin XX, McCutcheon JP, Rosenbaum AM, Wang MD, Zhang K, Mitra RD, Church GM (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309(5741):1728–1732. doi:10.1126/science.1117389 CrossRefGoogle Scholar
  38. Shin YS, Cho K, Lim SH, Chung S, Park SJ, Chung C, Han DC, Chang JK (2003) PDMS-based micro PCR chip with parylene coating. J Micromech Microeng 13(5):768–774CrossRefGoogle Scholar
  39. Tawfik DS, Griffiths AD (1998) Man-made cell-like compartments for molecular evolution. Nat Biotechnol 16(7):652–656CrossRefGoogle Scholar
  40. Wang JH, Chien LJ, Hsieh TM, Luo CH, Chou WP, Chen PH, Chen PJ, Lee DS, Lee GB (2009) A miniaturized quantitative polymerase chain reaction system for DNA amplification and detection. Sens Actuator B Chem 141(1):329–337. doi:10.1016/j.snb.2009.06.034 CrossRefGoogle Scholar
  41. Wendelboe AM, Van Rie A (2006) Diagnosis of pertussis: a historical review and recent developments. Expert Rev Mol Diagn 6(6):857–864. doi:10.1586/14737159.6.6.857 CrossRefGoogle Scholar
  42. Yeung SW, Hsing IM (2006) Manipulation and extraction of genomic DNA from cell lysate by functionalized magnetic particles for lab on a chip applications. Biosens Bioelectron 21(7):989–997. doi:10.1016/j.bios.2005.03.008 CrossRefGoogle Scholar
  43. Zhang C, Xing D (2010) Single-molecule DNA amplification and analysis using microfluidics. Chem Rev 110(8):4910–4947. doi:10.1021/cr900081z CrossRefGoogle Scholar
  44. Zhang CS, Xu JL, Ma WL, Zheng WL (2006) PCR microfluidic devices for DNA amplification. Biotechnol Adv 24(3):243–284. doi:10.1016/j.biotechadv.2005.10.002 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • John P. Hilton
    • 1
  • ThaiHuu Nguyen
    • 1
  • Mihaela Barbu
    • 2
  • Renjun Pei
    • 2
  • Milan Stojanovic
    • 2
  • Qiao Lin
    • 1
  1. 1.Department of Mechanical EngineeringColumbia UniversityNew YorkUSA
  2. 2.Division of Clinical Pharmacology and Experimental Therapeutics, Department of MedicineColumbia UniversityNew YorkUSA

Personalised recommendations