Microfluidics and Nanofluidics

, Volume 13, Issue 4, pp 625–635 | Cite as

Microfluidic devices in superconducting magnets: on-chip free-flow diamagnetophoresis of polymer particles and bubbles

  • Martin Vojtíšek
  • Mark D. Tarn
  • Noriyuki Hirota
  • Nicole PammeEmail author
Research Paper


Superconducting magnets enable the study of high magnetic fields on materials and objects, for example in material synthesis, self-assembly or levitation experiments. The setups employed often lack in precise spatial control of the object of interest within the bore of the magnet. Microfluidic technology enables accurate manipulation of fluidic surroundings and we have investigated the integration of microfluidic devices into superconducting magnets to enable controlled studies of objects in high magnetic fields. Polymeric microparticles similar in size to biological cells were manipulated via diamagnetic repulsion. The particles were suspended in an aqueous paramagnetic medium of manganese (II) chloride and pumped into a microfluidic chip, where they were repelled in continuous flow by the high magnetic field. The extent of deflection was studied as a function of increasing (1) particle size, (2) paramagnetic salt concentration, and (3) magnetic field strength. Optimizing these parameters allowed for the spatial separation of two particle populations via on-chip free-flow diamagnetophoresis. Finally, preliminary findings on the repulsion of air bubbles are shown.


Diamagnetic repulsion Continuous flow Microfluidics Microparticles Microbubbles Superconducting magnet 



The authors thank the National Institute for Materials Science (NIMS, Japan) for funding.


  1. Beaugnon E, Tournier R (1991) Levitation of organic materials. Nature 349(6309):470CrossRefGoogle Scholar
  2. Berry MV, Geim AK (1997) Of flying frogs and levitrons. Eur J Phys 18:307–313MathSciNetCrossRefGoogle Scholar
  3. Gijs MAM (2004) Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluid Nanofluid 1(1):22–40Google Scholar
  4. Gijs MAM, Lacharme F, Lehmann U (2010) Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev 110(3):1518–1563CrossRefGoogle Scholar
  5. Guevorkian K, Valles JM (2006) Swimming Paramecium in magnetically simulated enhanced, reduced, and inverted gravity environments. Proc Natl Acad Sci USA 103(35):13051–13056CrossRefGoogle Scholar
  6. Hahn YK, Park JK (2011) Versatile immunoassays based on isomagnetophoresis. Lab Chip 11(12):2045–2048CrossRefGoogle Scholar
  7. Han KH, Frazier AB (2004) Continuous magnetophoretic separation of blood cells in microdevice format. J Appl Phys 96(10):5797–5802CrossRefGoogle Scholar
  8. Han KH, Frazier AB (2005) Diamagnetic capture mode magnetophoretic microseparator for blood cells. J Microelectromech Syst 14(6):1422–1431CrossRefGoogle Scholar
  9. Happel J, Brenner H (1973) Low Reynolds number hydrodynamics. 2nd revised edn. Noordhoff International Publishing, LeydenGoogle Scholar
  10. Hirota N, Kurashige M, Iwasaka M, Ikehata M, Uetake H, Takayama T, Nakamura H, Ikezoe Y, Ueno S, Kitazawa K (2004) Magneto-Archimedes separation and its application to the separation of biological materials. Phys B 346–347:267–271CrossRefGoogle Scholar
  11. Iiguni Y, Suwa M, Watarai H (2004) High-magnetic-field electromagnetophoresis of micro-particles in a capillary flow system. J Chromatogr A 1032(1–2):165–171Google Scholar
  12. Ikezoe Y, Hirota N, Nakagawa J, Kitazawa K (1998) Making water levitate. Nature 393(6687):749CrossRefGoogle Scholar
  13. Iles A, Oki A, Pamme N (2007) Bonding of soda-lime glass microchips at low temperature. Microfluid Nanofluid 3(1):119–122CrossRefGoogle Scholar
  14. Kang JH, Choi S, Lee W, Park JK (2008) Isomagnetophoresis to discriminate subtle difference in magnetic susceptibility. J Am Chem Soc 130:396–397CrossRefGoogle Scholar
  15. Kose AR, Fischer B, Mao L, Koser H (2009) Label-free cellular manipulation and sorting via biocompatible ferrofluids. Proc Natl Acad Sci USA 106(51):21478–21483CrossRefGoogle Scholar
  16. Liang L, Zhu J, Xuan X (2011) Three-dimensional diamagnetic particle deflection in ferrofluid microchannel flows. Biomicrofluidics 5(3):034110CrossRefGoogle Scholar
  17. Liu Y, Zhu D-M, Strayer DM, Israelsson UE (2010) Magnetic levitation of large water droplets and mice. Adv Space Res 45(1):208–213CrossRefGoogle Scholar
  18. Lorin C, Mailfert A, Chatain D (2010) Design of a large oxygen magnetic levitation facility. Microgravity Sci Tec 22(1):71–77CrossRefGoogle Scholar
  19. McCreedy T (2001) Rapid prototyping of glass and PDMS microstructures for micro total analytical systems and micro chemical reactors by microfabrication in the general laboratory. Anal Chim Acta 427(1):39–43CrossRefGoogle Scholar
  20. Motokawa M, Hamai M, Sato T, Mogi I, Awaji S, Watanabe K, Kitamura N, Makihara M (2001) Crystal growth and materials processing in the magnetic levitation condition. J Magn Magn Mater 226–230(Part 2):2090–2093Google Scholar
  21. Pamme N (2006) Magnetism and microfluidics. Lab Chip 6(1):24–38CrossRefGoogle Scholar
  22. Pamme N, Manz A (2004) On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates. Anal Chem 76(24):7250–7256CrossRefGoogle Scholar
  23. Pamme N, Wilhelm C (2006) Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab Chip 6(8):974–980CrossRefGoogle Scholar
  24. Pamme N, Eijkel JCT, Manz A (2006) On-chip free-flow magnetophoresis: separation and detection of mixtures of magnetic particles in continuous flow. J Magn Magn Mater 307(2):237–244CrossRefGoogle Scholar
  25. Park JI, Nie Z, Kumachev A, Abdelrahman AI, Binks BP, Stone HA, Kumacheva E (2009) A microfluidic approach to chemically driven assembly of colloidal particles at gas-liquid interfaces. Angew Chem Int Ed 48:5300–5303CrossRefGoogle Scholar
  26. Peyman SA, Kwan EY, Margarson O, Iles A, Pamme N (2009) Diamagnetic repulsion-A versatile tool for label-free particle handling in microfluidic devices. J Chromatogr A 1216(52):9055–9062CrossRefGoogle Scholar
  27. Quettier L, Vincent-Viry O, Mailfert A, Juster FP (2003) Micro-gravity: superconducting coils for crystal growth. Influence of the levitation force on natural convection in the fluid. Eur Phys J Appl Phys 22(1):69–73Google Scholar
  28. Rodriguez-Villarreal AI, Tarn MD, Madden LA, Lutz JB, Greenman J, Samitier J, Pamme N (2011) Flow focussing of particles and cells based on their intrinsic properties using a simple diamagnetic repulsion setup. Lab Chip 11(7):1240–1248CrossRefGoogle Scholar
  29. Tagami M, Hamai M, Mogi I, Watanabe K, Motokawa M (1999) Solidification of levitating water in a gradient strong magnetic field. J Cryst Growth 203(4):594–598CrossRefGoogle Scholar
  30. Tarn MD, Hirota N, Iles A, Pamme N (2009a) On-chip diamagnetic repulsion in continuous flow. Sci Technol Adv Mater 10(1):014611CrossRefGoogle Scholar
  31. Tarn MD, Peyman SA, Robert D, Iles A, Wilhelm C, Pamme N (2009b) The importance of particle type selection and temperature control for on-chip free-flow magnetophoresis. J Magn Magn Mater 321(24):4115–4122CrossRefGoogle Scholar
  32. Valles JM, Lin K, Denegre JM, Mowry KL (1997) Stable magnetic field gradient levitation of Xenopus laevis: Toward low-gravity simulation. Biophys J 73(2):1130–1133CrossRefGoogle Scholar
  33. Watarai H, Namba M (2001) Magnetophoretic behavior of single polystyrene particles in aqueous manganese (II) chloride. Anal Sci 17(10):1233–1236CrossRefGoogle Scholar
  34. Watarai H, Namba M (2002) Capillary magnetophoresis of human blood cells and their magnetophoretic trapping in a flow system. J Chromatogr A 961(1):3–8CrossRefGoogle Scholar
  35. Watarai H, Suwa M, Iiguni Y (2004) Magnetophoresis and electromagnetophoresis of microparticles in liquids. Anal Bioanal Chem 378(7):1693–1699CrossRefGoogle Scholar
  36. Winkleman A, Gudiksen KL, Ryan D, Whitesides GM, Greenfield D, Prentiss M (2004) A magnetic trap for living cells suspended in a paramagnetic buffer. Appl Phys Lett 85(12):2411–2413CrossRefGoogle Scholar
  37. Winkleman A, Perez-Castillejos R, Gudiksen KL, Phillips ST, Prentiss M, Whitesides GM (2007) Density-based diamagnetic separation: devices for detecting binding events and for collecting unlabeled diamagnetic particles in paramagnetic solutions. Anal Chem 79(17):6542–6550CrossRefGoogle Scholar
  38. Yin DC, Lu HM, Geng LQ, Shi ZH, Luo HM, Li HS, Ye YJ, Guo WH, Shang P, Wakayama NI (2008) Growing and dissolving protein crystals in a levitated and containerless droplet. J Cryst Growth 310(6):1206–1212CrossRefGoogle Scholar
  39. Zhang K, Liang Q, Ai X, Hu P, Wang Y, Luo G (2011a) On-demand microfluidic droplet manipulation using hydrophobic ferrofluid as a continuous-phase. Lab Chip 11(7):1271–1275CrossRefGoogle Scholar
  40. Zhang K, Liang QL, Ai XN, Hu P, Wang YM, Luo GA (2011b) Comprehensive two-dimensional manipulations of picoliter microfluidic droplets sampled from nanoliter samples. Anal Chem 83(20):8029–8034CrossRefGoogle Scholar
  41. Zhu T, Marrero F, Mao L (2010) Continuous separation of non-magnetic particles inside ferrofluids. Microfluid Nanofluid 9(4):1003–1009CrossRefGoogle Scholar
  42. Zhu T, Cheng R, Mao L (2011a) Focusing microparticles in a microfluidic channel with ferrofluids. Microfluid Nanofluid 11(6):695–701CrossRefGoogle Scholar
  43. Zhu T, Lichlyter D, Haidekker M, Mao L (2011b) Analytical model of microfluidic transport of non-magnetic particles in ferrofluids under the influence of a permanent magnet. Microfluid Nanofluid 10(6):1233–1245CrossRefGoogle Scholar
  44. Zhu J, Liang L, Xuan X (2012) On-chip manipulation of nonmagnetic particles in paramagnetic solutions using embedded permanent magnets. Microfluid Nanofluid 12(1–4):65–73CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Martin Vojtíšek
    • 1
  • Mark D. Tarn
    • 1
    • 3
  • Noriyuki Hirota
    • 2
  • Nicole Pamme
    • 1
    Email author
  1. 1.Department of ChemistryThe University of HullHullUK
  2. 2.Nano Ceramics CenterNational Institute for Materials Science (NIMS)TsukubaJapan
  3. 3.KIST Europe, Korea Institute of Science and Technology Europe, Campus E7.1Universität des SaarlandesSaarbrückenGermany

Personalised recommendations