Skip to main content

Image-based algorithm for analysis of transient trapping in single-particle trajectories

Abstract

Particle tracking has become an increasingly useful tool in microfluidics and biophysics, allowing measurement of microrheology, local structure, and flow. We introduce a novel, automated approach to analyze single-particle trajectories with transient elements, based on image-processing approaches and physical analysis of probe motion. In many physical and active biological systems, such as living cells, probe particles experience thermally mediated Brownian motion combined with active transport processes that can lead to transient-trajectories of local diffusion and trapping, punctuated by segments of active transport. Analyzing such a trajectory as a single unit masks the intermittent nature of the motion. Moreover, directly applying the generalized Stokes–Einstein relation in out-of-equilibrium systems is incorrect and returns inaccurate rheological parameters. We present an automated image-processing-based method to identify and segment transient trap-escape trajectories, allowing quantitative analysis of each segment. We define and discuss effects of controlling parameters, such as particle size and camera frame rate. Our algorithm provides a general and automated method to segment and analyze transient elements in trajectories of single particles, which can be applied to many different experiments. Our image-based approach allows identification of trapping segments, unbiased by specific step sizes within those traps or the mechanism driving those steps. As an example, we successfully apply this method to experiments of laser tweezers trapped particles and show that trajectory segmentation allows us to calculate both trap and fluid parameters. We accurately identify a round trap, calculate the trap stiffness at 3.1 pN/μm, and find that significant local heating reduces fluid viscosity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Arcizet D, Meier B, Sackmann E, Radler JO, Heinrich D (2008) Temporal analysis of active and passive transport in living cells. Phys Rev Lett 101(24):248103

    Article  Google Scholar 

  2. Beck JV, Arnold KJ (1977) Parameter estimation in engineering and science. Wiley series in probability and mathematical statistics. Wiley, New York

    Google Scholar 

  3. Brangwynne CP, Koenderink GH, MacKintosh FC, Weitz DA (2008) Nonequilibrium microtubule fluctuations in a model cytoskeleton. Phys Rev Lett 100(11):118104

    Article  Google Scholar 

  4. Bronstein I, Israel Y, Kepten E, Mai S, Shav-Tal Y, Barkai E, Garini Y (2009) Transient anomalous diffusion of telomeres in the nucleus of mammalian cells. Phys Rev Lett 103(1):018102. doi:10.1103/Physrevlett.103.018102

    Article  Google Scholar 

  5. Burov S, Jeon JH, Metzler R, Barkai E (2011) Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking. Phys Chem Chem Phys 13(5):1800–1812. doi:10.1039/C0cp01879a

    Article  Google Scholar 

  6. Bursac P, Lenormand G, Fabry B, Oliver M, Weitz DA, Viasnoff V, Butler JP, Fredberg JJ (2005) Cytoskeletal remodelling and slow dynamics in the living cell. Nat Mat 4:557–561

    Article  Google Scholar 

  7. Cohen I, Weihs D (2010) Rheology and microrheology of natural and reduced-calorie Israeli honeys as a model for high-viscosity Newtonian liquids. J Food Eng 100(2):366–371. doi:10.1016/j.jfoodeng.2010.04.023

    Article  Google Scholar 

  8. Einstein A (1956) Investigation on the theory of Brownian movement (trans: Cowper AD). Dover, New York

    Google Scholar 

  9. Fakhri N, MacKintosh FC, Lounis B, Cognet L, Pasquali M (2010) Brownian motion of stiff filaments in a crowded environment. Science 330(6012):1804–1807. doi:10.1126/science.1197321

    Article  Google Scholar 

  10. Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A (2002) Phospholipids undergo hop diffusion in compartmentalized cell membrane. J Cell Biol 157(6):1071–1081. doi:10.1083/jcb.200202050

    Article  Google Scholar 

  11. Gal N, Weihs D (2010) Experimental evidence of strong anomalous diffusion in living cells. Phys Rev E 81:020903

    Article  Google Scholar 

  12. Golding I, Cox EC (2006) Physical nature of bacterial cytoplasm. Phys Rev Lett 96(9):098102. doi:10.1103/Physrevlett.96.098102

    Article  Google Scholar 

  13. He Y, Burov S, Metzler R, Barkai E (2008) Random time-scale invariant diffusion and transport coefficients. Phys Rev Lett 101(5): 058101. doi:10.1103/Physrevlett.101.058101

  14. Jeon JH, Tejedor V, Burov S, Barkai E, Selhuber-Unkel C, Berg-Sorensen K, Oddershede L, Metzler R (2011) In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. Phys Rev Lett 106(4):048103. doi:10.1103/Physrevlett.106.048103

    Google Scholar 

  15. Mason TG, Weitz DA (1995) Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys Rev Lett 74(7):1250–1253

    Article  Google Scholar 

  16. Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339(1):1–77

    MATH  MathSciNet  Article  Google Scholar 

  17. Oppong FK, de Bruyn JR (2007) Diffusion of microscopic tracer particles in a yield-stress fluid. J Non Newton Fluid Mech 142(1–3):104–111. doi:10.1016/j.jnnfm.2006.05.008

    MATH  Article  Google Scholar 

  18. Powles JG, Mallett MJD, Rickayzen G, Evans WAB (1992) Exact analytic solutions for diffusion impeded by an infinite array of partially permeable barriers. Proc R Soc Lond Ser A Math Phys Eng Sci 436(1897):391–403

    MATH  MathSciNet  Article  Google Scholar 

  19. Reuveni S, Granek R, Klafter J (2010) Anomalies in the vibrational dynamics of proteins are a consequence of fractal-like structure. Proc Natl Acad Sci USA 107(31):13696–13700. doi:10.1073/pnas.1002018107

    Article  Google Scholar 

  20. Rich JP, McKinley GH, Doyle PS (2011) Size dependence of microprobe dynamics during gelation of a discotic colloidal clay. J Rheol 55(2):273–299. doi:10.1122/1.3532979

    Article  Google Scholar 

  21. Saxton MJ, Jacobson K (1997) Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct 26:373–399

    Article  Google Scholar 

  22. Stokes GG (1856) On the effect of the internal friction of fluids on the motion of pendulums. Trans Camb Philos Soc 9:8–106

    Google Scholar 

  23. Suh JH, Wirtz D, Hanes J (2004) Real-time intracellular transport of gene nanocarriers studied by multiple particle tracking. Biotechnol Prog 20(2):598–602

    Article  Google Scholar 

  24. Tseng Y, Lee JSH, Kole TP, Jiang I, Wirtz D (2004) Micro-organization and visco-elasticity of the interphase nucleus revealed by particle nanotracking. J Cell Sci 117(10):2159–2167

    Article  Google Scholar 

  25. Valentine MT, Perlman ZE, Gardel ML, Shin JH, Matsudaira P, Mitchison TJ, Weitz DA (2004) Colloid surface chemistry critically affects multiple particle tracking measurements of biomaterials. Biophys J 86(6):4004–4014

    Article  Google Scholar 

  26. Weber SC, Spakowitz AJ, Theriot JA (2010) Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm. Phys Rev Lett 104(23):238102. doi:10.1103/Physrevlett.104.238102

    Google Scholar 

  27. Weeks ER, Crocker JC, Levitt AC, Schofield A, Weitz DA (2000) Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287:627–631

    Article  Google Scholar 

  28. Weihs D, Mason TG, Teitell MA (2006) Bio-microrheology: a frontier in microrheology. Biophys J 91:4296–4305

    Article  Google Scholar 

  29. Weihs D, Teitell MA, Mason TG (2007) Simulations of complex particle transport in heterogeneous active liquids. Microfluid Nanofluid 3:227–237

    Article  Google Scholar 

  30. Yao A, Tassieri M, Padgett M, Cooper J (2009) Microrheology with optical tweezers. Lab Chip 9(17):2568–2575

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Y. Lanir for his assistance with the parameter estimation. The authors also thank M. Segev for his constructive comments on the manuscript. This study was supported by the Israeli Ministry of Science and Technion VPR funds.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daphne Weihs.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weihs, D., Gilad, D., Seon, M. et al. Image-based algorithm for analysis of transient trapping in single-particle trajectories. Microfluid Nanofluid 12, 337–344 (2012). https://doi.org/10.1007/s10404-011-0877-3

Download citation

Keywords

  • Single particle tracking
  • Trajectories with transient elements
  • Microrheology
  • Cell mechanics