Microfluidics and Nanofluidics

, Volume 12, Issue 1–4, pp 317–324 | Cite as

Microfluidic centrifuge based on a counterflow configuration

  • N. Pertaya-Braun
  • T. Baier
  • S. HardtEmail author
Research Paper


We present a microfluidic centrifuge with no moving parts, relying on a vortex formed between two counterflowing liquid streams. The centrifuge is driven by streams with a speed of 0.6–2.6 m/s, resulting in accelerations applied to samples between 50 and 2,000 g. The liquid flow in the centrifugation chamber and the transport of microparticles are visualized using epi-fluorescence microscopy and bright-field imaging with a high-speed camera. It is found that small particles follow the streamlines of the flow, whereas larger particles show a cross-stream migration. The size separation of different particles is demonstrated, and the experiments clearly indicate that as the flow speed increases, the particles in the vortex are increasingly driven outwards. Per construction, the centrifuge is ideally suited for handling small sample amounts and can be integrated with lab-on-a-chip systems.


Centrifuge Vortex Microparticles Size separation 

Supplementary material

10404_2011_875_MOESM1_ESM.docx (1.9 mb)
Supplementary material 1 (DOCX 1949 kb)
10404_2011_875_MOESM2_ESM.mpg (2.2 mb)
Supplementary material 2 (MPG 2231 kb)
10404_2011_875_MOESM3_ESM.mpg (387 kb)
Supplementary material 3 (MPG 387 kb)


  1. Abarbanel ZI, Kovalenko VS (1977) Theory of centrifugal sedimentation of large particles. J Eng Phys 32(5):561–565CrossRefGoogle Scholar
  2. Alberts B (2008) Molecular biology of the cell, 5th edn. Garland Science, New YorkGoogle Scholar
  3. Caldwell KD, Giddings JC, Myers MN, Kesner LF (1972) Electrical field-flow fractionation of proteins. Science 176(4032):296CrossRefGoogle Scholar
  4. Chiu DT (2007) Cellular manipulations in microvortices. Anal Bioanal Chem 387(1):17–20. doi: 10.1007/s00216-006-0611-2 CrossRefGoogle Scholar
  5. Cole JL, Hansen JC (1999) Analytical ultracentrifugation as a contemporary biomolecular research tool. J Biomol Tech 10(4):163–176Google Scholar
  6. Dario P, Carrozza MC, Benvenuto A, Menciassi A (2000) Micro-systems in biomedical applications. J Micromech Microeng 10(2):235–244CrossRefGoogle Scholar
  7. Di Carlo D (2009) Inertial microfluidics. Lab Chip 9(21):3038–3046. doi: 10.1039/b912547g CrossRefGoogle Scholar
  8. Ferziger JH, Peric M (2002) Computational methods for fluid dynamics, 3rd edn. Springer, BerlinCrossRefzbMATHGoogle Scholar
  9. Fiorini GS, Chiu DT (2005) Disposable microfluidic devices: fabrication, function, and application. Biotechniques 38(3):429–446CrossRefGoogle Scholar
  10. Fonslow BR, Bowser MT (2005) Free-flow electrophoresis on an anodic bonded glass microchip. Anal Chem 77(17):5706–5710. doi: 10.1021/ac050766n CrossRefGoogle Scholar
  11. Giddings JC (1966) A new separation concept based on a coupling of concentration and flow uniformities. Sep Sci Technol 1:123–125CrossRefGoogle Scholar
  12. Gorkin R, Park J, Siegrist J, Amasia M, Lee BS, Park J-M, Kim J, Kim H, Madou M, Cho Y-K (2010) Centrifugal microfluidics for biomedical applications. Lab Chip 10(14):1758–1773CrossRefGoogle Scholar
  13. Graham J (2001) Biological centrifugation. The Basics, 1st edn. BIOS Scientific Publishers, OxfordGoogle Scholar
  14. Huang LR, Cox EC, Austin RH, Sturm JC (2004) Continuous particle separation through deterministic lateral displacement. Science 304(5673):987–990CrossRefGoogle Scholar
  15. Lee JH, Ha JB, Bahk YK, Yoon SH, Arakawa T, Ko JS, Shin BS, Shoji S, Go JS (2008) Microfluidic centrifuge of nano-particles using rotating flow in a microchamber. Sensors Actuators B Chem 132(2):525–530. doi: 10.1016/j.snb.2007.11.027 CrossRefGoogle Scholar
  16. Lenshof A, Laurell T (2010) Continuous separation of cells and particles in microfluidic systems. Chem Soc Rev 39(3):1203–1217. doi: 10.1039/b915999c CrossRefGoogle Scholar
  17. Leung WW-F (1998) Industrial centrifugation technology. McGraw-Hill, New YorkGoogle Scholar
  18. Leung WWF (2008) Centrifugal separation in biotechnology. In: 2008 American Filtration & Separations Society Conference, American Filtration and Separations Society, 19–22 May 2008, Valley ForgeGoogle Scholar
  19. Lim DSW, Shelby JP, Kuo JS, Chiu DT (2003) Dynamic formation of ring-shaped patterns of colloidal particles in microfluidic systems. Appl Phys Lett 83(6):1145Google Scholar
  20. Marziali A (2001) Centrifugation. Encyclopedia of separation science, vol 8. Academic Press, LondonGoogle Scholar
  21. Pethig R (2010) Dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4(2):022811. doi:10.1063/1.3474458
  22. Regel LL, Wilcox WR (2001) Processing by centrifugation, 1st edn. Kluver Academic, New YorkGoogle Scholar
  23. Shelby JP, Lim DSW, Kuo JS, Chiu DT (2003) High radial acceleration in microvortices. Nature 425(6953):38. doi: 10.1038/425038a CrossRefGoogle Scholar
  24. Sollier E, Rostaing H, Pouteau P, Fouillet Y, Achard J-L (2009) Passive microfluidic devices for plasma extraction from whole human blood. Sensors Actuators B Chemical 141(2):617–624CrossRefGoogle Scholar
  25. Weller HG, Tabor G, Jasak H, Fureby C (1998) A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput Phys 12:620–631. doi: 10.1063/1.168744 CrossRefGoogle Scholar
  26. Zhang CX, Manz A (2003) High-speed free-flow electrophoresis on chip. Anal Chem 75(21):5759–5766. doi: 10.1021/ac0345190 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Center of Smart InterfacesTU DarmstadtDarmstadtGermany

Personalised recommendations