Advertisement

Microfluidics and Nanofluidics

, Volume 12, Issue 1–4, pp 221–228 | Cite as

Optothermal sample preconcentration and manipulation with temperature gradient focusing

  • M. Akbari
  • M. Bahrami
  • D. Sinton
Research Paper

Abstract

In this article, we present an optothermal analyte preconcentration method based on temperature gradient focusing. This approach offers a flexible, noninvasive technique for focusing and transporting charged analytes in microfluidics using light energy. The method uses the optical field control provided by a digital projector as established for particle manipulation, to achieve analogous functionality for molecular analytes for the first time. The optothermal heating system is characterized and the ability to control of the heated zone location, size, and power is demonstrated. The method is applied to concentrate a sample model analyte, along a microcapillary, resulting in almost 500-fold local concentration increase in 15 min. Optically controlled upstream and downstream transport of a focused analyte band is demonstrated with a heater velocity of ∼170 μm/min.

Keywords

Optothermal Temperature gradient focusing Preconcentration Analyte manipulation Microfluidics 

Notes

Acknowledgments

The authors thank the financial support of the Natural Sciences and Engineering Research Council of Canada NSERC through discovery grants to MB and DS, BC Innovation Council (BCIC) through research scholarship to MA, and the Canada Research Chair Program.

Supplementary material

MPG (3826 KB)

References

  1. Albert M, Debusschere L, Demesmay C, Rocca JL (1997) Large-volume stacking for quantitative analysis of anions in capillary electrophoresis I. Large-volume stacking with polarity switching. J Chromatgr A 757:281–289CrossRefGoogle Scholar
  2. Arora A, Simone G, Salieb-Beugelaar GB, Kim JT, Manz A (2010) Latest developments in micro total analysis systems. Anal Chem 82:4830–4847CrossRefGoogle Scholar
  3. Astroga-Wells J, Vollmer S, Tryggvason S, Bergman T, Jőrnvall H (2005) Microfluidic electrocapture for separation of peptides. Anal Chem 77:7131–7136CrossRefGoogle Scholar
  4. Balss KM, Vreeland WN, Howell PB, Henry AC, Ross D (2004) Micellar affinity gradient focusing: a new method for electrokinetic focusing. J Am Chem Soc 126:1936–1937CrossRefGoogle Scholar
  5. Becker M, Mansouri A, Beilein C, Janasek D (2009) Temperature gradient focusing in miniaturized free-flow electrophoresis devices. Electrophoresis 30:4206–4212CrossRefGoogle Scholar
  6. Boček P, Deml M, Janák J (1978) Effect of a concentration cascade of the leading electrolyte on the separation capacity in isotachophoresis. J Chromatogr 156:323–326CrossRefGoogle Scholar
  7. Burgi DS, Chien R-L (1991) Optimization in sample stacking for high-performance capillary electrophoresis. Anal Chem 63:2042–2047CrossRefGoogle Scholar
  8. Chien R-L, Burgi DS (1992) Sample stacking of an extremely large injection volume in high-performance capillary electrophoresis. Anal Chem 64:1046–1050Google Scholar
  9. Chiou PY, Ohta AT, Wu MC (2005) Massively parallel manipulation of single cells and microparticles using optical images. Nature 436(7049):370–372CrossRefGoogle Scholar
  10. Chiou PY, Ohta AT, Jamshidi A, Hsu HY, Wu MC (2008) Light-actuated ac electroosmosis for nanoparticle manipulation. J Microelectromech Syst 17(3):525–531CrossRefGoogle Scholar
  11. Duhr S, Braun D (2006) Why molecules move along a temperature gradient. PNAS 103(52):19678–19682CrossRefGoogle Scholar
  12. Dupuy A, Lehmann S, Cristol J (2005) Protein biochip systems for the clinical laboratory. Clin Chem Lab Med 43:1219–1302Google Scholar
  13. Erickson D, Sinton D, Li D (2003) Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems. Lab Chip 3:141–149CrossRefGoogle Scholar
  14. Everaerts FM, Verheggen PEM, Mikkers FEP (1979) Determination of substances at low concentrations in complex mixtures by isotachophoresis with column coupling. J Chromatogr 169:21–38CrossRefGoogle Scholar
  15. Fu R, Xu B, Li D (2006) Study of the temperature field in microchannels of a PDMS chip with embedded local heater using temperature-dependent fluorescent dye. Int J Thermal Sci 45:841–847CrossRefGoogle Scholar
  16. Ge Z, Yang C, Tang G (2010) Concentration enhancement of sample solutes in a sudden expansion microchannel with Joule heating. Int J Heat Mass Transfer 53:2722–2731CrossRefzbMATHGoogle Scholar
  17. Grier DG (2003) A revolution in optical manipulation. Nature 424(6950):810–816CrossRefGoogle Scholar
  18. Guijt RM, Dodge A, van Dedem GWK, de Rooij NF, Verpoorte E (2003) Chemical and physical processes for integrated temperature control in microfluidic devices. Lab Chip 3:1–4CrossRefGoogle Scholar
  19. Hoebel SJ, Balss KM, Jones BJ, Malliaris CD, Munson MS, Vreeland WN, Ross D (2006) Scanning temperature gradient focusing. Anal Chem 78:7186–7190CrossRefGoogle Scholar
  20. Huber D, Santiago JG (2007) Taylor–Aris dispersion in temperature gradient focusing. Electrophoresis 28:2333–2344CrossRefGoogle Scholar
  21. Isoo K, Terabe S (2003) Analysis of metal ions by sweeping via dynamic complexation and cation-selective exhaustive injection in capillary electrophoresis. Anal Chem 75:6789–6798CrossRefGoogle Scholar
  22. Issadore D, Humphry KJ, Brown KA, Sandberg L, Weitz DA, Westervelt RM (2009) Microwave dielectric heating of drops in microfluidic devices. Lab Chip 9:1701–1706CrossRefGoogle Scholar
  23. Kaigala GV, Hoang VN, Stickel A, Lauzon J, Manage D, Pilarski LM, Backhouse CJ (2008) An inexpensive and portable microchip-based platform for integrated RT–PCR and capillary electrophoresis. Analyst 133:331–338CrossRefGoogle Scholar
  24. Kamande MW, Ross D, Locascio LE, Lowry M, Warner IM (2007) Simultaneous concentration and separation of coumarins using a molecular micelle in micellar affinity gradient focusing. Anal Chem 79:1791–1796CrossRefGoogle Scholar
  25. Ke C, Berney H, Mathewson A, Sheeshan MM (2004) Rapid amplification for the detection of Mycobacterium tuberculosis using a non-contact heating method in a silicon microreactor based thermal cycler. Sens Actuators B 102(2):308–314CrossRefGoogle Scholar
  26. Koegler WS, Ivory CF (1996) Focusing proteins in an electric field gradient. J Chromatgr A 726:229–236CrossRefGoogle Scholar
  27. Krishnan M, Erickson D (2011) Creating optically reconfigurable channel based microfluidic systems. IEEE Winter Topicals (WTM) 103–104Google Scholar
  28. Krishnan M, Oark J, Erickson D (2009) Optothermorheological flow manipulation. Optic Lett 34(13):1976–1978CrossRefGoogle Scholar
  29. Kumar A, Kwon JS, Williams SJ, Green NG, Yip NK, Wereley ST (2010) Optically modulated electrokinetic manipulation and concentration of colloidal particles near an electrode surface. Langmuir 26(7):5262–5272CrossRefGoogle Scholar
  30. Lee DS, Park SH, Yang H, Chung KH, Yoon TH, Kim SJ (2004) Bulk micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption. Lab Chip 4:401–407CrossRefGoogle Scholar
  31. Liao CS, Lee GB, Wu JJ, Chang CC, Hsieh TM, Huang FC (2005) Micromachined polymerase chain reaction system for multiple DNA amplification of upper respiratory tract infectious diseases. Biosens Bioelectron 20:1341–1348CrossRefGoogle Scholar
  32. Liu Y, Rauch CB, Stevens RL, Lenigk R, Yang J, Rhine DB, Grodzinski P (2002) DNA Amplification and hybridization assays in integrated plastic monolithic devices. Anal Chem 74:3063–3070CrossRefGoogle Scholar
  33. Liu GL, Kim J, Lu Y, Lee LP (2005) Optofluidic control using photothermal nanoparticles. Nat Mater 5(1):27–32CrossRefGoogle Scholar
  34. Matsui T, Franzke J, Manz A, Janasek D (2007) Temperature gradient focusing in a PDMS/glass hybrid microfluidic chip. Electrophoresis 28:4606–4611CrossRefGoogle Scholar
  35. Mikkers FEP, Everaerts FM, Verheggen PEM (1979) High-performance zone electrophoresis. J Chromatgr 169:11–20CrossRefGoogle Scholar
  36. Munson MS, Danger G, Shackman JG, Ross D (2007) Temperature gradient focusing with field-amplified continuous sample injection for dual-stage analyte enrichment and separation. Anal Chem 79:6201–6207CrossRefGoogle Scholar
  37. Myers FB, Lee LP (2009) Innovations in optical microfluidic technologies for point-of-care diagnostics. Lab Chip 8:2015–2031CrossRefGoogle Scholar
  38. Oda RP, Strausbauch MA, Huhmer AFR, Borson N, Jurrens SR, Craighead J (1998) Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplification of DNA. Anal Chem 70:4361–4368CrossRefGoogle Scholar
  39. Psaltis D, Quake SR, Yang C (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442(7101):381–386CrossRefGoogle Scholar
  40. Quirino JP, Terabe S (1998) Exceeding 5000-fold concentration of dilute analytes in micellar electrokinetic chromatography. Science 282:465–468CrossRefGoogle Scholar
  41. Quirino JP, Terabe S (1999) Sweeping of analyte zones in electrokinetic chromatography. Anal Chem 71:1638–1644CrossRefGoogle Scholar
  42. Ross D, Johnson TJ, Locascio LE (2001) Temperature measurement in microfluidic systems using a temperature dependent fluorescent dye. Anal Chem 73:2509–2515CrossRefGoogle Scholar
  43. Ross D, Locascio LE (2002) Microfluidic temperature gradient focusing. Anal Chem 74:2556–2564CrossRefGoogle Scholar
  44. Shackman JG, Ross D (2007) Counter-flow gradient electrofocusing. Electrophoresis 28:556–571CrossRefGoogle Scholar
  45. Sommer GJ, Kim SM, Littrel RJ, Hasselbrink EF (2007) Theoretical and numerical analysis of temperature gradient focusing via Joule heating. Lab Chip 7:898–907CrossRefGoogle Scholar
  46. Tang G, Yang C (2008) Numerical modeling of Joule heating-induced temperature gradient focusing in microfluidic channels. Electrophoresis 29:1006–1012CrossRefGoogle Scholar
  47. Terray A, Oakey J, Marr DWM (2002) Microfluidic control using colloidal devices. Science 296(5574):1841–1844CrossRefGoogle Scholar
  48. Tolley HD, Wang Q, LeFebre DA, Lee ML (2002) Equilibrium gradient methods with nonlinear field intensity gradient: a theoretical approach. Anal Chem 74:4456–4463CrossRefGoogle Scholar
  49. Toner M, Irimia D (2005) Blood-on-a-chip. Annu Rev Biomed Eng 7:77–103CrossRefGoogle Scholar
  50. Vigolo D, Rusconi R, Piazzaa R, Howard A, Stone A (2010) Portable device for temperature control along microchannels. Lab Chip 10:795–798CrossRefGoogle Scholar
  51. Wang Q, Tan Y, Gong H (2003) An integrated system for real-time PCR analysis based on microfluidic biochip. Int J Comp Eng Sci 4(2):285–288CrossRefGoogle Scholar
  52. Yang H, Choi CA, Chung KH, Jun CH, Kim YT (2004) An independent temperature-controllable microelectrode array. Anal Chem 76(5):1537–1543CrossRefGoogle Scholar
  53. Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH (2006) Microfluidic diagnostic technologies for global public health. Nature 442:412–418CrossRefGoogle Scholar
  54. Yager P, Domingo GJ, Gerdes J (2008) Diagnostics for global health. Annu Rev Biomed Eng 10:107–144CrossRefGoogle Scholar
  55. Yang AHJ, Moore SD, Schmidt BS, Klug M, Lipson M, Erickson D (2009) Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature 475(7225):71–75CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Mechatronic Systems EngineeringSimon Fraser UniversitySurreyCanada
  2. 2.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations