Advertisement

Microfluidics and Nanofluidics

, Volume 11, Issue 6, pp 787–791 | Cite as

The end of nanochannels

  • Thomas B. Sisan
  • Seth LichterEmail author
Short Communication

Abstract

Current theories of nanochannel flow impose no upper bound on flow rates, and predict friction through nanochannels can be vanishingly small. We reassess neglecting channel entry effects in extremely long channels and find violations at the nanoscale. Even in frictionless nanochannels, end effects provide a finite amount of friction. Hence, the speed at which nanochannels transport liquids is limited. Flow-rate and slip-length measurements are reevaluated using calculations which include end-effect friction. End effects are critical for the design of new technological devices and to understand biological transport.

Keywords

Nanoscale fluid flow Nanotubes Aquaporin 

Notes

Acknowledgments

Mark Johnson provided insight into flows through biological pores. Mitra Hartmann and Alphonso Mondragon provided editorial assistance. This study was funded by a generous grant from the A. K. Barlow foundation.

References

  1. Du F, Qu L, Xia Z, Feng L, Dai L (2011) Membranes of vertically aligned superlong carbon nanotubes. Langmuir 27:8437–8443. doi: 10.1021/la200995r CrossRefGoogle Scholar
  2. Falk K, Sedlmeier F, Joly L, Netz RR, Bocquet L (2010) Molecular origin of fast water transport in carbon nanotube membranes superlubricity versus curvature dependent friction. Nano Lett 10(10):4067–4073. doi: 10.1021/nl1021046 CrossRefGoogle Scholar
  3. Goldsmith J, Martens CC (2009) Pressure-induced water flow through model nanopores. Phys Chem Chem Phys 11:528–533. doi: 10.1039/B807823H CrossRefGoogle Scholar
  4. Hinds BJ, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas LG (2004) Aligned multiwalled carbon nanotube membranes. Science 303(5654):62–65. doi: 10.1126/science.1092048 CrossRefGoogle Scholar
  5. Holt JK, Park HG, Wang Y, Stadermann M, Artyukhin AB, Grigoropoulos CP, Noy A, Bakajin O (2006) Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312(5776):1034–1037. doi: 10.1126/science.1126298 CrossRefGoogle Scholar
  6. Hummer G, Rasaiah JC, Noworyta JP (2001) Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414(6860):188–190. doi: 10.1038/35102535 CrossRefGoogle Scholar
  7. Joly L (2011) Capillary filling with giant liquid/solid slip: dynamics of water uptake by carbon nanotubes. arXiv:1107.3819v1 [cond-mat.soft]Google Scholar
  8. Kalra A, Garde S, Hummer G (2003) Osmotic water transport through carbon nanotube membranes. Proc Natl Acad Sci USA 100(18):10,175–10,180. doi: 10.1073/pnas.1633354100 CrossRefGoogle Scholar
  9. Majumder M, Chopra N, Andrews R, Hinds BJ (2005) Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 438(7064):44. doi: 10.1038/43844a CrossRefGoogle Scholar
  10. Majumder M, Chopra N, Hinds BJ (2011) Mass transport through carbon nanotube membranes in three different regimes: ionic diffusion and gas and liquid flow. ACS Nano. doi: 10.1021/nn200222g
  11. Preston GM, Carroll TP, Guggino WB, Agre P (1992) Appearance of water channels in Xenopus oocytes expressing red cell chip28 protein. Science 256:385–387. doi: 10.1126/science.256.5055.385 CrossRefGoogle Scholar
  12. Sampson RA (1891) On Stokes’s current function. Phil Trans R Soc Lond A 182:449–518. doi: 10.1098/rsta.1891.0012 CrossRefGoogle Scholar
  13. Suk ME, Aluru NR (2010) Water transport through ultrathin graphene. J Phys Chem Lett 1(10):1590–1594. doi: 10.1021/jz100240r CrossRefGoogle Scholar
  14. Thomas JA, McGaughey AJH (2008) Reassessing fast water transport through carbon nanotubes. Nano Lett 8(9):2788–2793. doi: 10.1021/nl8013617 CrossRefGoogle Scholar
  15. Thomas JA, McGaughey AJH (2009) Water flow in carbon nanotubes: transition to subcontinuum transport. Phys Rev Lett 102(18):184–502. doi: 10.1103/PhysRevLett.102.184502 CrossRefGoogle Scholar
  16. Wang CY (1994) Stokes flow through a thin screen with patterned holes. AIChE J 40(3):419–423. doi: 10.1002/aic.690400305 CrossRefGoogle Scholar
  17. Weissberg HL (1962) End correction for slow viscous flow through long tubes. Phys Fluids 5(9):1033. doi: 10.1063/1.1724469 MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of PhysicsNorthwestern UniversityEvanstonUSA
  2. 2.Department of Mechanical EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations