Skip to main content
Log in

Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure

  • Short Communication
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Instead of the conventional method of monitoring the transmitted light through a ferrofluid film, in this study we use ferrofluids as the guiding layer in a double metal-cladding optical waveguide structure, and measure the reflected light intensity to investigate the chain formation speed (switching speed) in ferrofluids. We conclude that the ultrahigh-order mode-induced optical trapping effect may be the main reason for the observed fast switching time which is increased by at least three orders of magnitude when a magnetic field was applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Ashkin A, Dziedzic J, Bjorkholm J, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt lett 11(5):288–290

    Article  Google Scholar 

  • Ashkin A, Dziedzic J, Yamane T (1987) Optical trapping and manipulation of single cells using infrared laser beams. Nature 330(6150):769–771

    Article  Google Scholar 

  • Born M, Wolf E, Bhatia AB (1999) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Cambridge University Press, Cambridge

  • Butter K, Bomans P, Frederik P, Vroege G, Philipse A (2003) Direct observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy. Nat Mater 2(2):88–91

    Article  Google Scholar 

  • Chen Y, Yang S, Tse W, Horng H, Hong CY, Yang H (2003) Thermal effect on the field-dependent refractive index of the magnetic fluid film. Appl phys lett 82(20):3481–3483

    Article  Google Scholar 

  • Dai Q, Deng H, Zhao W, Liu J, Wu L, Lan S, Gopal A (2010) All-optical switching mediated by magnetic nanoparticles. Opt Lett 35(2):97–99

    Article  Google Scholar 

  • Deng H, Liu J, Zhao W, Zhang W, Lin X, Sun T, Dai Q, Wu L, Lan S, Gopal A (2008) Enhancement of switching speed by laser-induced clustering of nanoparticles in magnetic fluids. Appl Phys Lett 92:233103

    Article  Google Scholar 

  • Horng H, Chen C, Fang K, Yang S, Chieh J, Hong C, Yang H (2004) Tunable optical switch using magnetic fluids. Appl Phys Lett 85:5592

    Article  Google Scholar 

  • Kim J, Lee J, Lee J, Yu J, Kim B, An K, Hwang Y, Shin C, Park J (2006) Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. J Am Chem Soc 128(3):688–689

    Article  Google Scholar 

  • Klokkenburg M, Erné B, Meeldijk J, Wiedenmann A, Petukhov A, Dullens R, Philipse A (2006) In situ imaging of field-induced hexagonal columns in magnetite ferrofluids. Phys Rev Lett 97(18):185702

    Article  Google Scholar 

  • Li J, Zhao B, Lin Y, Qiu X, Ma X (2002) Transmission of light in ionic ferrofluid. J Appl Phys 92:1128

    Article  Google Scholar 

  • Li H, Cao Z, Lu H, Shen Q (2003) Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide. Appl Phys Lett 83:2757

    Article  Google Scholar 

  • Li J, Liu X, Lin Y, Qiu X, Ma X, Huang Y (2004) Field-induced transmission of light in ionic ferrofluids of tunable viscosity. J Phys D Appl Phys 37:3357

    Article  Google Scholar 

  • Li J, Liu X, Lin Y, Bai L, Li Q, Chen X, Wang A (2007) Field modulation of light transmission through ferrofluid film. Appl Phys Lett 91:253108

    Article  Google Scholar 

  • Lu H, Cao Z, Li H, Shen Q (2004) Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide. Appl Phys Lett 85(20):4579–4581

    Article  Google Scholar 

  • McCloskey K, Chalmers J, Zborowski M (2003) Magnetic cell separation: characterization of magnetophoretic mobility. Anal Chem 75(24):6868–6874

    Article  Google Scholar 

  • Odenbach S, Liu M (2001) Invalidation of the Kelvin force in ferrofluids. Phys Rev Lett 86(2):328–331

    Article  Google Scholar 

  • Pi H, Park S, Lee J, Lee K (2000) Superlattice, rhombus, square, and hexagonal standing waves in magnetically driven ferrofluid surface. Phys Rev Lett 84(23):5316–5319

    Article  Google Scholar 

  • Safran S (2003) Ferrofluids: magnetic strings and networks. Nat Mater 2(2):71–72

    Article  Google Scholar 

  • Sun Y, Bu J, Ong L, Yuan X (2007a) Simultaneous optical trapping of microparticles in multiple planes by a modified self-imaging effect on a chip. Appl Phys Lett 91:051101

    Article  Google Scholar 

  • Sun Y, Yuan X, Ong L, Bu J, Zhu S, Liu R (2007b) Large-scale optical traps on a chip for optical sorting. Appl Phys Lett 90:031107

    Article  Google Scholar 

  • Suslick K, Fang M, Hyeon T (1996) Sonochemical synthesis of iron colloids. J Am Chem Soc 118(47):11960–11961

    Article  Google Scholar 

  • Wang Y, Li H, Cao Z, Yu T, Shen Q, He Y (2008) Oscillating wave sensor based on the Goos–H nchen effect. Appl Phys Lett 92:061117

    Article  Google Scholar 

  • Yang S, Chen Y, Horng H, Hong CY, Tse W, Yang H (2002) Magnetically modulated refractive index of magnetic fluid films. Appl phys lett 81:4931

    Article  Google Scholar 

  • Yang S, Hsiao Y, Huang Y, Horng H, Hong C, Yang H (2004) Retarded response of the optical transmittance through a magnetic fluid film under switching-on/off external magnetic fields. J Magn Magn Mater 281(1):48–52

    Article  Google Scholar 

  • Yu T, Li H, Cao Z, Wang Y, Shen Q, He Y (2008) Oscillating wave displacement sensor using the enhanced Goos–H nchen effect in a symmetrical metal-cladding optical waveguide. Opt Lett 33(9):1001–1003

    Article  Google Scholar 

  • Yuan W, Yin C, Li H, Xiao P, Cao Z (2011) Wideband slow light assisted by ultrahigh-order modes. JOSA B 28(5):968–971

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Nos. 10874121, 10874119, and 10474093) and the National Basic Research Program “973” of China (Contract No. 2007CB307000), and the Foundation for Development of Science and Technology of Shanghai (Grant No. 10JC1407200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuangqi Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, W., Yin, C., Xiao, P. et al. Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure. Microfluid Nanofluid 11, 781–785 (2011). https://doi.org/10.1007/s10404-011-0844-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-011-0844-z

Keywords

Navigation