Skip to main content
Log in

Microfluidic pump based on the phenomenon of electroosmosis of the second kind

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

A micropump based on strong polarization of ion-exchange beads and corresponding actuation by electroosmosis of the second kind was designed and fabricated. Experimental results from operation with AC and DC voltage showed a close to second order relationship between flow and voltage, in good agreement with theory. The difference between experimental and theoretical flow rates and pressures is attributed to the hydrodynamic resistance of the channel network. A modified pump design which should yield higher flow rates and pressures was suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ajdari A (2000) Pumping liquids using asymmetric electrode arrays. Phys Rev E 61:R45–R48

    Article  Google Scholar 

  • Barinova NO, Mishchuk NA (2008) Electroosmosis in system of ion-exchange granules. Colloid J 70:743–747

    Google Scholar 

  • Belova EI, Lopatkova GYu, Pismenskaya ND, Nikonenko VV, Larchet C, Pourcelly G (2006) Effect of anion-exchange membrane surface properties on mechanisms of overlimiting mass transfer. J Phys Chem B 110:13458–13469

    Article  Google Scholar 

  • Ben Y, Chang HC (2002) Nonlinear Smoluchowski slip velocity and vortex generation. J Fluid Film 461:229–238

    MathSciNet  MATH  Google Scholar 

  • Bhattacharyya A, Masliyah JH, Yang J (2003) Oscillating laminar electrokinetic flow in infinitely extended circular microchannels. J Colloid Interface Sci 261:12–20

    Article  Google Scholar 

  • Colon LA, Burgos G, Maloney TD, Cintron JM, Rodriguez RL (2000) Recent progress in capillary electrochromatography. Electrophoresis 21:3965–3993

    Article  Google Scholar 

  • Debesset S, Hayden CJ, Dalton C, Eijkel JCT, Manz A (2004) An AC electroosmotic micropump for circular chromatographic applications. Lab on a Chip 4:396–400

    Article  Google Scholar 

  • Dukhin AS, Dukhin SS (2005) Aperiodic capillary electrophoresis method using an alternating current for separation of macromolecules. Electrophoresis 26:2149–2153

    Article  Google Scholar 

  • Dukhin SS, Mishchuk NA (1988a) Unrestricted increase in the current through a granule of an ion exchanger. Colloids J (USSR) 49:1047–1049

    Google Scholar 

  • Dukhin SS, Mishchuk NA (1988b) Strong concentration polarization of thin double layer of spherical particle at external electric field. Colloid J (USSR) 50:208–214

    Google Scholar 

  • Dukhin SS, Mishchuk NA (1993) Intensification of electrodialysis based on the electroosmosis of the second kind. J Membr Sci 79:199–210

    Article  Google Scholar 

  • Dukhin SS, Mishchuk NA, Tarovsky AA, Baran AA (1987) Electrophoresis of the second kind. Colloid J (USSR) 49:616–617

    Google Scholar 

  • Eckstein Yu, Yossifon G, Seifert A, Miloh T (2009) Nonlinear electrokinetic phenomena around nearly insulated sharp tips in microflows. J Colloid Interface Sci 338:243–249

    Article  Google Scholar 

  • Gnusin NP, Grebenyuk VD (1972) Electrochemistry of granulated ionites. Naukova Dumka, Kiev

    Google Scholar 

  • Holtzel A, Tallarek U (2007) Ionic conductance of nanopores in microscale analysis systems: where microfluidics meets nanofluidics. J Sep Sci 30:1398–1419

    Article  Google Scholar 

  • Hu G, Li D (2007) Multiscale phenomena in microfluidics and nanofluidics. Chem Eng Sci 62:3443–3454

    Article  Google Scholar 

  • Kivanc FC, Litster S (2011) Pumping with electroosmosis of the second kind in mesoporous skeletons. Sens Actuators B 151:394–401

    Article  Google Scholar 

  • Lastochkin D, Zhou R, Wang P, Ben Y, Chang H-C (2004) Electrokinetic micropump and micromixer design based on AC faradaic polarization. J Appl Phys 96:1730–1734

    Article  Google Scholar 

  • Leinweber FC, Tallarek U (2005) Concentration polarization-based nonlinear electrokinetics in porous media: induced-charge electroosmosis. J Phys Chem B 109:21481–21485

    Article  Google Scholar 

  • Listovnichij AV (1991) Concentration polarization of system ion-exchange membrane at overlimiting mode. Russ J Electrochem 27:316–323

    Google Scholar 

  • Lojtsjanskij LG (1973) Mechanic of liquid and gas. Nauka, Moscow

    Google Scholar 

  • Minor M, van der Linde AJ, van Leeuwen H, Lyklema J (1997) Dynamic aspects of electrophoresis and electroosmosis: a new fast method for measuring particle mobilities. J Colloid Interface Sci 189:370–375

    Article  Google Scholar 

  • Mishchuk NA (1996) Electrokinetic phenomena at strong concentration polarization of interface. Dr. Sc. thesis, ICCWC, Kiev

  • Mishchuk NA (1998a) Electroosmosis of the second kind near the heterogeneous ion-exchange membrane. Colloids Surf A 140:75–89

    Article  Google Scholar 

  • Mishchuk NA (1998b) Perspectives of electrodialysis intensification. Desalination 117:283–296

    Article  Google Scholar 

  • Mishchuk NA (1999) Water dissociation at strong concentration polarisation of disperse particles. Colloids Surf A 159:467–475

    Article  Google Scholar 

  • Mishchuk NA (2006) Electrokinetic phenomena of the second kind. In: Mishchuk NA (ed) Encyclopedia of surface and colloid science, vol 3. Taylor & Francis, New York, p 2180

    Google Scholar 

  • Mishchuk NA (2010) Concentration polarization of interface and non-linear electrokinetic phenomena. Adv Colloid Interface Sci 2010(160):16–39

    Article  Google Scholar 

  • Mishchuk NA, Barinova NO (2005) Peculiarities of electroosmosis of the second kind at the surfaces of one and two ionite granules. Colloid J 67:164–171

    Article  Google Scholar 

  • Mishchuk NA, Dukhin SS (1989) Electrophoresis of spherical non-conductive particle at strong concentration polarization of double layer. Colloid J (USSR) 50:952–958

    Google Scholar 

  • Mishchuk NA, Dukhin SS (2002a) Electrophoresis of solid particles at large Peclet number. Electrophoresis 13:2012–2022

    Article  Google Scholar 

  • Mishchuk NA, Dukhin SS (2002b) Electrokinetic phenomena of the second kind. In: Delgado A (ed) Interfacial electrokinetics and electrophoresis. Marcel Dekker, New York, p 241

    Google Scholar 

  • Mishchuk NA, Gonzalez-Caballero F (2006a) Nonstationary electroosmotic flow in open cylindrical capillaries. Electrophoresis 27:650–660

    Article  Google Scholar 

  • Mishchuk NA, Gonzalez-Caballero F (2006b) Nonstationary electroosmotic flow in closed cylindrical capillaries. Electrophoresis 27:661–671

    Article  Google Scholar 

  • Mishchuk NA, Takhistov PV (1995) Electroosmosis of the second kind. Colloids Surf A 95:119–131

    Article  Google Scholar 

  • Mishchuk NA, Barany S, Tarovsky AA, Madai F (1998) Superfast electrophoresis of electron-type conducting particles. Colloids Surf A 140:43–51

    Article  Google Scholar 

  • Mishchuk NA, Koopal LK, Gonzalez-Caballero F (2001) Intensification of electrodialysis by a non-stationary electric field. Colloids Surf A 176:195–212

    Article  Google Scholar 

  • Mishchuk NA, Delgado AV, Ahualli S, González-Caballero F (2007) Non-stationary electro-osmotic flow in closed cylindrical capillaries. Theory and experiment. J Colloid Interface Sci 309:308–314

    Article  Google Scholar 

  • Mishchuk NA, Heldal T, Volden T, Auerswald J, Knapp H (2009) Micropump based on electroosmosis of the second kind. Electrophoresis 30:3499–3506

    Article  Google Scholar 

  • Mpholo M, Smith CG, Brown ABD (2003) Low voltage plug flow pumping using anisotropic electrode arrays. Sens Actuators B 92:262–268

    Article  Google Scholar 

  • Nischang I, Chen G, Tallarek U (2006) Electrohydrodynamics in hierarchically structured monolithic and particulate fixed beds. J Chromatogr A 1109:32–50

    Article  Google Scholar 

  • Nischang I, Reichl U, Seidel-Morgenstern A, Tallarek U (2007) Concentration polarization and nonequilibrium electroosmotic slip in dense multiparticle systems. Langmuir 23:9271–9281

    Article  Google Scholar 

  • Nischang I, Höltzel A, Seidel-Morgenstern A, Tallarek U (2008) Concentration polarization and nonequilibrium electroosmotic slip in hierarchical monolithic structures. Electrophoresis 29:1140–1151

    Article  Google Scholar 

  • Oddy MH, Santiago JG (2004) A method for determining electrophoretic and electroosmotic mobilities using AC and DC electric field particle displacements. J Colloid Interface Sci 269:192–204

    Article  Google Scholar 

  • Ramos A, Morgan H, Green NG, González A, Castellanos A (2005) Pumping of liquids with travelling-wave electroosmosis. J Appl Phys 97:084906-1-8

    Article  Google Scholar 

  • Rathore AS, Horvath C (1997) Capillary electrochromatography: theories on electroosmotic flow in porous media. J Chromatogr A 781:185–195

    Article  Google Scholar 

  • Reichmuth DS, Chirica GS, Kirby BJ (2003) Increasing the performance of high-pressure, high-efficiency electrokinetic micropumps using zwitterionic solute additives. Sens Actuators B 79:37–43

    Article  Google Scholar 

  • Roberts RM, Chang H-C (2000) Wave-enhanced interfacial transfer. Chem Eng Sci 55:1127–1141

    Article  Google Scholar 

  • Rubinstein I, Maletzki F (1991) Electroconvection at an electrically inhomogeneous permselective membrane surface. J Chem Soc Faraday Trans 87:2079–2087

    Article  Google Scholar 

  • Rubinstein I, Shtilman L (1979) Voltage against current curves of cation exchange membranes. J Chem Soc Faraday Trans 2(75):231–246

    Google Scholar 

  • Rubinstein I, Zaltzman B, Kedem O (1997) Electric fields in and around ion-exchange membranes. J Membr Sci 125:17–21

    Article  Google Scholar 

  • Stol R, Kok WTh, Poppe H (2001) Size-exclusion electrochromatography with controlled pore flow. J Chromatogr A 914:201–209

    Article  Google Scholar 

  • Strickland DG, Suss ME, Zangle TA, Santiago JG (2010) Evidence shows concentration polarization and its propagation can be key factors determining electroosmotic pump performance. Sens Actuators B 143:795–798

    Article  Google Scholar 

  • Studer V, Pepin A, Chen Y, Ajdari A (2004) An integrated AC electrokinetic pump in a microfluidic loop for fast and tunable flow control. Analyst 129:944–949

    Article  Google Scholar 

  • Suss ME, Mani A, Zangle TA, Santiago JQ (2011) Electroosmotic pump performance is affected by concentration polarizations of both electrodes and pump. Sens Actuators A 165:310–315

    Google Scholar 

  • Takhistov P, Duginova K, Chang H-C (2003) Electrokinetic mixing vortices due to electrolyte depletion at microchannel junctions. J Colloid Interface Sci 263:133–143

    Article  Google Scholar 

  • Tallarek U, Leinweber FC, Nischang I (2005) Perspective on concentration polarization effects in electrochromatographic separations. Electrophoresis 26:391

    Article  Google Scholar 

  • Tikhomolova KP (1993) Electroosmosis. Ellis Horwood, Chichester

    Google Scholar 

  • Wang P, Chen Z, Chang H-C (2006) A new electro-osmotic pump based on silica monoliths. Sens Actuators B 113:500–509

    Article  Google Scholar 

  • Yang J, Bhattacharyya A, Masliyah JH, Kwok DY (2003) Oscillating laminar electrokinetic flow in infinitely extended rectangular microchannels. J Colloid Interface Sci 261:21–31

    Article  Google Scholar 

  • Yao Sh, Hertzog DE, Zeng Sh, Mikkelsen JC, Santiago JG (2003) Porous glass electroosmotic pumps: design and experiments. J Colloid Interface Sci 268:143–153

    Article  Google Scholar 

  • Zabolotskii VI, Nikonenko VV (1996a) Electrodialysis of diluted electrolyte solutions: some theoretical and applied aspects. Russ J Electrochem 32:223–230

    Google Scholar 

  • Zabolotskii VI, Nikonenko VV (1996b) The ion transport in membranes. Nauka, Moscow (in Russian)

    Google Scholar 

  • Zaltzman B, Rubinstein I (2007) Electro-osmotic slip and electroconvective instability. J Fluid Mech 579:173–226

    Article  MathSciNet  MATH  Google Scholar 

  • Zeng Sh, Chen Ch-H, Mikkelsen JC, Santiago JG (2001) Fabrication and characterization of electroosmotic micropumps. Sens Actuators B 79:107–114

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataliya A. Mishchuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishchuk, N.A., Heldal, T., Volden, T. et al. Microfluidic pump based on the phenomenon of electroosmosis of the second kind. Microfluid Nanofluid 11, 675–684 (2011). https://doi.org/10.1007/s10404-011-0833-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-011-0833-2

Keywords

Navigation