Skip to main content


Log in

Microfluidic liquid actuation through ground-directed electric discharge

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript


In this article, we present a new technique to actuate liquids in microchannels using ground-directed electric discharge generated by a portable corona device. When an electric discharge is applied, the air in the microchannel is ionized causing a change in the surface energy. The resulting change in the contact angle induces rapid liquid transport through the channel by capillary action. In contrast to established plasma treatment this method employs a ground electrode that guides the electric field. This approach enables rapid treatment of select microchannels and thus provides a means of real-time fluid actuation as opposed to simply a pretreatment process. Instantaneous fluid velocities show power-law dependence with time and fit theoretical models at a contact angle of 65°. Average fluid velocities are on the order of 5 cm/s, and thus channels on the order of 1-cm long are filled in ~0.2 s. To demonstrate the potential of this technique for integrated lab-on-a-chip applications, the method was employed in serpentine channel, for on-demand fluid routing, to initiate a mixing process, and through an on-chip integrated microelectrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others


  • Adams TM, White AR (2008) Macroscopic conservation equation based model for surface tension driven flow. Adv Fluid Mech Vii 59:133–141

    Article  Google Scholar 

  • Arifin DR, Yeo LY, Friend JR (2007) Microfluidic blood plasma separation via bulk electrohydrodynamic flows. Biomicrofluidics 1(1):014103–014113

    Article  Google Scholar 

  • Bittencourt JA (2004) Fundamentals of plasma physics. Springer, New York

    MATH  Google Scholar 

  • Chih-Peng H, Jewell-Larsen NE, Krichtafovitch IA, Montgomery SW, Dibene JT, Mamishev AV (2007) Miniaturization of electrostatic fluid accelerators. J Microelectromech Syst 16(4):809–815

    Article  Google Scholar 

  • Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70(23):4974–4984

    Article  Google Scholar 

  • Evju JK, Howell PB, Locascio LE, Tarlov MJ, Hickman JJ (2004) Atmospheric pressure microplasmas for modifying sealed microfluidic devices. Appl Phys Lett 84(10):1668–1670

    Article  Google Scholar 

  • Fair RB (2007) Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluid 3(3):245–281

    Article  Google Scholar 

  • Haubert K, Drier T, Beebe D (2006) PDMS bonding by means of a portable, low-cost corona system. Lab Chip 6(12):1548–1549

    Article  Google Scholar 

  • Hilpert M (2009) Effects of dynamic contact angle on liquid infiltration into horizontal capillary tubes: (Semi)-analytical solutions. J Colloid Interface Sci 337(1):131–137

    Article  Google Scholar 

  • Hilpert J, Kern J (1974) Electric wind in a corona discharge—theory and measurement. Arch Elektrotech 56(1):50–54

    Article  Google Scholar 

  • Horiuchi K, Dutta P (2006) Electrokinetic flow control in microfluidic chips using a field-effect transistor. Lab Chip 6(6):714–723

    Article  Google Scholar 

  • Hsu CP, Jewell-Larsen NE, Krichtafovitch IA, Montgomery SW, Dibene JT, Mamishev AV (2007) Miniaturization of electrostatic fluid accelerators. J Microelectromech Syst 16(4):809–815

    Article  Google Scholar 

  • Juncker D, Schmid H, Drechsler U, Wolf H, Wolf M, Michel B, de Rooij N, Delamarche E (2002) Autonomous microfluidic capillary system. Anal Chem 74(24):6139–6144

    Article  Google Scholar 

  • Kim J, Chaudhury MK, Owen MJ (2000) Hydrophobic recovery of polydimethylsiloxane elastomer exposed to partial electrical discharge. J Colloid Interface Sci 226(2):231–236

    Article  Google Scholar 

  • Kim J, Kido H, Rangel RH, Madou MJ (2008) Passive flow switching valves on a centrifugal microfluidic platform. Sens Actuators B 128(2):613–621

    Article  Google Scholar 

  • Luk VN, Wheeler AR (2009) A digital microfluidic approach to proteomic sample processing. Anal Chem 81(11):4524–4530

    Article  Google Scholar 

  • Makamba H, Kim J, Lim K, Park K, Hahn JH (2003) Surface modification of poly(dimethylsiloxane) microchannels. Electrophoresis 24(21):3607–3619

    Article  Google Scholar 

  • Moreau E (2007) Airflow control by non-thermal plasma actuators. J Phys D 40(3):605–636

    Article  Google Scholar 

  • Robinson M (1962) A history of electric wind. Am J Phys 30(5):366

    Article  Google Scholar 

  • Seimandi P, Dufour G, Rogier F (2009) An asymptotic model for steady wire-to-wire corona discharges. Math Comput Model 50(3–4):574–583

    Article  MathSciNet  MATH  Google Scholar 

  • Sun C, Zhang D, Wadsworth LC (1999) Corona treatment of polyolefin films—a review. Adv Polym Technol 18(2):171–180

    Article  Google Scholar 

  • Sung Kwon C, Hyejin M, Chang-Jin K (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromech Syst 12(1):70–80

    Article  Google Scholar 

  • Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298:580–584

    Article  Google Scholar 

  • Thorslund S, Nikolajeff F (2007) Instant oxidation of closed microchannels. J Micromech Microeng 17(4):N16–N21

    Article  Google Scholar 

  • Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–116

    Article  Google Scholar 

  • Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17(3):273

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373

    Article  Google Scholar 

  • Whitesides GM, Stroock AD (2001) Flexible methods for microfluidics. Phys Today 54(6):42–48

    Article  MathSciNet  Google Scholar 

  • Yeo LY, Hou D, Maheshswari S, Chang HC (2006) Electrohydrodynamic surface microvortices for mixing and particle trapping. Appl Phys Lett 88(23):233512

    Article  Google Scholar 

  • Zenkiewicz M (2005) Oxidation of the filled-polyolefin-film surface layer by corona treatment. Przem Chem 84(10):733–739

    Google Scholar 

Download references


The authors would like to acknowledge funding from the Canada Research Chairs Program as well as a scholarship to CE and a research grant to DS from the Natural Science and Engineering Council of Canada (NSERC). Infrastructure funding from the Canadian Foundation for Innovation is also gratefully acknowledged. The authors would also acknowledge helpful discussions with Te-Chun Wu.

Author information

Authors and Affiliations


Corresponding author

Correspondence to David Sinton.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escobedo, C., Sinton, D. Microfluidic liquid actuation through ground-directed electric discharge. Microfluid Nanofluid 11, 653–662 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: