Advertisement

Microfluidics and Nanofluidics

, Volume 11, Issue 2, pp 209–220 | Cite as

A disposable, integrated loop-mediated isothermal amplification cassette with thermally actuated valves

  • Changchun Liu
  • Michael G. Mauk
  • Haim H. BauEmail author
Research Paper

Abstract

An inexpensive, disposable, integrated, polymer-based cassette for loop-mediated isothermal amplification (LAMP) of target nucleic acids was designed, fabricated, and tested. The LAMP chamber was equipped with single-use, thermally actuated valves made with a composite consisting of a mixture of PDMS and expandable microspheres. The effect of the composite composition on its expansion was investigated, and the valve’s performance was evaluated. In its closed state, the valve can hold pressures as high as 200 kPa without any significant leakage. Both the LAMP chamber and the valves were actuated with thin film heaters. The utility of the cassette was demonstrated by carrying out LAMP of Escherichia coli DNA target and reverse transcribed loop meditated isothermal amplification (RT-LAMP) of RNA targets. The amplicons were detected in real time with a portable, compact detector. The system was capable of detecting as few as 10 target molecules per sample in well under 1 h. The portable, integrated cassette system described here is particularly suited for applications at the point of care and in resource-poor countries, where funds and trained personnel are in short supply.

Keywords

Integrated microfluidic cassette Loop-mediated isothermal amplification (LAMP) Thermally actuated PDMS valves Escherichia coli Nucleic acid detection Real-time fluorescence quantification Expandable microsphere Thermal actuation 

Notes

Acknowledgments

The work was supported by NIH/NIDCR Grant U01DE017855. Professor Abhay Vats from the Children’s Hospital of Pittsburgh provided useful advice and gifted template and primers for the Escherichia coli LAMP. Ms. Amanda Wynne Dyson machined the LAMP cassettes.

Supplementary material

10404_2011_788_MOESM1_ESM.docx (438 kb)
Supplementary material 1 (DOCX 438 kb)

References

  1. Auroux PA, Koc Y, deMello A, Manz A, Day PJ (2004) Miniaturised nucleic acid analysis. Lab Chip 4(6):534–546CrossRefGoogle Scholar
  2. Bae B, Kim N, Kee H, Kim SH, Lee Y, Lee S, Park K (2002) Feasibility test of an electromagnetically driven valve actuator for glaucoma treatment. J Microelectromech Syst 11(4):344–354CrossRefGoogle Scholar
  3. Bonacorsi S, Bingen E (2005) Molecular epidemiology of Escherichia coli causing neonatal meningitis. Int J Med Microbiol 295(6–7):373–381CrossRefGoogle Scholar
  4. Chen Z, Qian S, Abrams WR, Malamud D, Bau HH (2004) Thermosiphon-based PCR reactor: experiment and modeling. Anal Chem 76(13):3707–3715CrossRefGoogle Scholar
  5. Chen Z, Wang J, Qian S, Bau HH (2005) Thermally-actuated, phase change flow control for microfluidic systems. Lab Chip 5(11):1277–1285CrossRefGoogle Scholar
  6. Chen Z, Mauk MG, Wang J, Abrams WR, Corstjens PLAM, Niedbala RS, Malamud D, Bau HH (2007) A microfluidic system for saliva-based detection of infectious diseases. Ann NY Acad Sci 1098:429–436CrossRefGoogle Scholar
  7. Chen G, Svec F, Knapp DR (2008) Light-actuated high pressure-resisting microvalve for on-chip flow control based on thermo-responsive nanostructured polymer. Lab Chip 8(7):1198–1204CrossRefGoogle Scholar
  8. Clarke SC (2001) Diarrhoeagenic Escherichia coli: an emerging problem? Diagn Microbiol Infect Dis 41(3):93–98CrossRefGoogle Scholar
  9. Compton J (1991) Nucleic acid sequence-based amplification. Nature 350(6313):91–92CrossRefGoogle Scholar
  10. Das C, Fredrickson CK, Xia Z, Fan ZH (2007) Device fabrication and integration with photodefinable microvalves for protein separation. Sens Actuators A 134(1):271–277CrossRefGoogle Scholar
  11. Dimov IK, Garcia-Cordero JL, O’Grady J, Poulsen CR, Viguier C, Kent L, Daly P, Lincoln B, Maher M, O’Kennedy R, Smith TJ, Ricco AJ, Lee LP (2008) Integrated microfluidic tmRNA purification and real-time NASBA device for molecular diagnostics. Lab Chip 8(12):2071–2078CrossRefGoogle Scholar
  12. Easley CJ, Karlinsey JM, Bienvenue JM, Legendre LA, Roper MG, Feldman SH, Hughes MA, Hewlett EL, Merkel TJ, Ferrance JP, Landers JP (2006) A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability. Proc Natl Acad Sci USA 103(51):19272–19277CrossRefGoogle Scholar
  13. Fang X, Liu Y, Kong J, Jiang X (2010) Loop-mediated isothermal amplification integrated on microfluidic chips for point-of-care quantitative detection of pathogens. Anal Chem 82(7):3002–3006CrossRefGoogle Scholar
  14. Gaspar A, Piyasena ME, Daroczi L, Gomez FA (2008) Magnetically controlled valve for flow manipulation in polymer microfluidic devices. Microfluid Nanofluid 4(6):525–531CrossRefGoogle Scholar
  15. Griss P, Andersson H, Stemme G (2002) Expandable microspheres for the handling of liquids. Lab Chip 2(2):117–120CrossRefGoogle Scholar
  16. Gulliksen A, Solli LA, Drese KS, Sörensen O, Karlsen F, Rogne H, Hovig E, Sirevåg R (2005) Parallel nanoliter detection of cancer markers using polymer microchips. Lab Chip 5(4):416–420CrossRefGoogle Scholar
  17. Hatano B, Maki T, Obara T, Fukumoto H, Hagisawa K, Matsushita Y, Okutani A, Bazartseren B, Inoue S, Sata T, Katano H (2010) LAMP using a disposable pocket warmer for anthrax detection, a highly mobile and reliable method for anti-bioterrorism. Jpn J Infect Dis 63(1):36–40Google Scholar
  18. Hill J, Beriwal S, Chandra I, Paul VK, Kapil A, Singh T, Wadowsky RM, Singh V, Goyal A, Jahnukainen T, Johnson JR, Tarr PI, Vats A (2008) Loop-mediated isothermal amplification assay for rapid detection of common strains of Escherichia coli. J Clin Microbiol 46(8):2800–2804CrossRefGoogle Scholar
  19. House DL, Chon CH, Creech CB, Skaar EP, Li D (2010) Miniature on-chip detection of unpurified methicillin-resistant Staphylococcus aureus (MRSA) DNA using real-time PCR. J Biotechnol 146(3):93–99CrossRefGoogle Scholar
  20. Johnson JR (2003) Microbial virulence determinants and the pathogenesis of urinary tract infection. Infect Dis Clin N Am 17(2):261–278CrossRefGoogle Scholar
  21. Kim JH, Na KH, Kang CJ, Jeon D, Kim YS (2004) A disposable thermopneumatic-actuated microvalve stacked with PDMS layers and ITO-coated glass. Microelectron Eng 73–74:864–869CrossRefGoogle Scholar
  22. Kim J, Byun D, Mauk MG, Bau HH (2009) A disposable, self-contained PCR chip. Lab Chip 9(4):606–612CrossRefGoogle Scholar
  23. Klein EJ, Boster DR, Stapp JR, Wells JG, Qin X, Clausen CR, Swerdlow DL, Braden CR, Tarr PI (2006) Diarrhea etiology in a Children’s Hospital Emergency Department: a prospective cohort study. Clin Infect Dis 43(7):807–813CrossRefGoogle Scholar
  24. Lagally ET, Scherer JR, Blazej RG, Toriello NM, Diep BA, Ramchandani M, Sensabaugh GF, Riley LW, Mathies RA (2004) Integrated portable genetic analysis microsystem for pathogen/infectious disease detection. Anal Chem 76(11):3162–3170CrossRefGoogle Scholar
  25. Li HQ, Roberts DC, Steyn JL, Turner KT, Yaglioglu O, Hagood NW, Spearing SM, Schmidt MA (2004) Fabrication of a high frequency piezoelectric microvalve. Sens Actuators A 111(1):51–56CrossRefGoogle Scholar
  26. Lien K-Y, Lee S-H, Tsai T-J, Chen T-Y, Lee G-B (2009) A microfluidic-based system using reverse transcription polymerase chain reactions for rapid detection of aquaculture diseases. Microfluid Nanofluid 7(6):795–806CrossRefGoogle Scholar
  27. Liu Y, Rauch CB, Stevens RL, Lenigk R, Yang J, Rhine DB, Grodzinski P (2002) DNA amplification and hybridization assays in integrated plastic monolithic devices. Anal Chem 74(13):3063–3070CrossRefGoogle Scholar
  28. Liu RH, Bonanno J, Yang J, Lenigk R, Grodzinski P (2004) Single-use, thermally actuated paraffin valves for microfluidic applications. Sens Actuators B 98(2–3):328–336CrossRefGoogle Scholar
  29. Liu C, Qiu X, Ongagna S, Chen D, Chen Z, Abrams WR, Malamud D, Corstjens PLAM, Bau HH (2009) A timer-actuated immunoassay cassette for detecting molecular markers in oral fluids. Lab chip 9(6):768–776CrossRefGoogle Scholar
  30. Liu C, Geva E, Mauk M, Qiu X, Abrams WR, Malamud D, Curtis K, Owen M, Bau HH (2011) An isothermal amplification reactor with an integrated isolation membrane for point-of-care detection of infectious diseases. Analyst. doi: 10.1039/C1AN00007A
  31. Lutz S, Weber P, Focke M, Faltin B, Hoffmann J, Müller C, Mark D, Roth G, Munday P, Armes N, Piepenburg O, Zengerle R, von Stetten F (2010) Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA). Lab Chip 10(7):887–893CrossRefGoogle Scholar
  32. Mark JE (1999) Polymer data handbook. Oxford University Press, New YorkGoogle Scholar
  33. Marrs CF, Zhang L, Foxman B (2005) Escherichia coli mediated urinary tract infections: are there distinct uropathogenic E. coli (UPEC) pathotypes? FEMS Microbiol Lett 252(2):183–190CrossRefGoogle Scholar
  34. Nagamine K, Hase T, Notomi T (2002) Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes 16(3):223–229CrossRefGoogle Scholar
  35. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28(12):E63CrossRefGoogle Scholar
  36. Oh KW, Ahn CH (2006) A review of microvalves. J Micromech Microeng 16(5):R13–R39CrossRefGoogle Scholar
  37. Oh KW, Rong R, Ahn CH (2005) Miniaturization of pinch-type valves and pumps for practical micro total analysis system integration. J Micromech Microeng 15(12):2449–2455CrossRefGoogle Scholar
  38. Piepenburg O, Williams CH, Stemple DL, Armes NA (2006) DNA detection using recombination proteins. PLoS Biol 4(7):e204CrossRefGoogle Scholar
  39. Ramalingam N, San TC, Kai TJ, Mak MYM, Gong HQ (2009) Microfluidic devices harboring unsealed reactors for real-time isothermal helicase-dependent amplification. Microfluid Nanofluid 7(3):325–336CrossRefGoogle Scholar
  40. Roxhed N, Rydholm S, Samel B, van der Wijngaart W, Griss P, Stemme G (2006) A compact, low-cost microliter-range liquid dispenser based on expandable microspheres. J Micromech Microeng 16(12):2740–2746CrossRefGoogle Scholar
  41. Samel B, Griss P, Stemme G (2007a) A thermally responsive PDMS composite and its microfluidic applications. J Microelectromech Syst 16(1):50–57CrossRefGoogle Scholar
  42. Samel B, Nock V, Russom A, Griss P, Stemme G (2007b) A disposable lab-on-a-chip platform with embedded fluid actuators for active nanoliter liquid handling. Biomed Microdevices 9(1):61–67CrossRefGoogle Scholar
  43. Sato K, Tachihara A, Renberg B, Mawatari K, Sato K, Tanaka Y, Jarvius J, Nilsson M, Kitamori T (2010) Microbead-based rolling circle amplification in a microchip for sensitive DNA detection. Lab Chip 10(10):1262–1266CrossRefGoogle Scholar
  44. Shao P, Rummler Z, Schomburg WK (2004) Polymer micro piezo valve with a small dead volume. J Micromech Microeng 14(2):305–309CrossRefGoogle Scholar
  45. Walker GT, Fraiser MS, Schram JL, Little MC, Nadeau JG, Malinowski DP (1992) Strand displacement amplification-an isothermal, in vitro DNA amplification technique. Nucleic Acids Res 20(7):1691–1696CrossRefGoogle Scholar
  46. Wang J, Chen Z, Mauk M, Hong KS, Li M, Yang S, Bau HH (2005) Self-actuated, thermo-responsive hydrogel valves for lab on a chip. Biomed Microdevices 7(4):313–322CrossRefGoogle Scholar
  47. Wang J, Chen Z, Corstjens PLAM, Mauk MG, Bau HH (2006) A disposable microfluidic cassette for DNA amplification and detection. Lab Chip 6(1):46–53CrossRefGoogle Scholar
  48. Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH (2006) Microfluidic diagnostic technologies for global public health. Nature 442(7101):412–418CrossRefGoogle Scholar
  49. Zhang C, Xing D (2007) Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends. Nucleic Acids Res 35(13):4223–4237CrossRefGoogle Scholar
  50. Zhang C, Xing D (2010) Decreasing microfluidic evaporation loss using the HMDL method: open systems for nucleic acid amplification and analysis. Microfluid Nanofluid 9(1):17–30CrossRefMathSciNetGoogle Scholar
  51. Zhang C, Xu J, Ma W, Zheng W (2006) PCR microfluidic devices for DNA amplification. Biotechnol Adv 24(3):243–284CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Mechanical Engineering and Applied MechanicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations