Skip to main content
Log in

Periodic input flows tuning nonlinear two-phase dynamics in a snake microchannel

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In this experimental study, the effects on two-phase flow dynamics in a microfluidic snake channel due to periodic forcing were considered. Time series analysis was exploited to investigate on the obtained bubbles’ flow considering two aspects: the role of driven frequency through Fourier analysis and the nonlinear behavior through the evaluation of d-infinite and Largest Lyapunov exponent. Phase diagrams summarize the results: the two nonlinear parameters are plotted versus the air fraction and the frequency of the input flow rates. The identified relation maps allow the classification of the flow dynamics, opening the way for the control of bubble flow through signal analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aurell E, Boffetta G, Crisanti A, Paladin G, Vulpiani A (1997) Predictability in the large: an extension of the concept of Lyapunov exponent. J Phys A 30:1–26

    Article  MATH  MathSciNet  Google Scholar 

  • Barbier V, Willaime H, Tabeling P (2006) Producing droplets in parallel microfluidic systems. Phys Rev Lett E 74:046306-1–046306-4

    Google Scholar 

  • Barry R, Ivanov D (2004) Microfluidics in biotechnology. J Nanobiotechnol 2:1–5

    Article  Google Scholar 

  • Bonasera A, Bucolo M, Fortuna L, Frasca M, Rizzo A (2003) The \(d_{\infty}\) parameter to characterise chaotic dynamics. Non linear Phenom Complex Syst 6:565–570

    Google Scholar 

  • Bringer MR, Gerdts CJ, Song H, Tice JD, Ismagilov RF (2004) Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets. Philos Trans R Soc A 362:1087–1104

    Article  Google Scholar 

  • Cubaud T, Ho CM (2004) Transport of bubbles in square microchannels. Phys Fluids 16:4575-4585

    Article  Google Scholar 

  • Dreyfus R, Tabeling P, Willaime H (2003) Ordered and disordered patterns in two-phase flows in microchennels. Phys Rev Lett 90:144505-1–144505-4

    Google Scholar 

  • Garstecki P, Fuerstman J, M Fischbach, Sia SK, Whitesides GM (2006) Mixing with bubbles: a practial technology for use with portable microfluidic devices. Lab Chip 6:207–212

    Article  Google Scholar 

  • Griffiths AD, Tawfik DS (2006) Miniaturising the laboratory in emulsion droplets. Trends Biotechnol 24:395–402

    Article  Google Scholar 

  • Jiao Z, Nguyen N-T, Huang X (2007) Chaotic motion of microplugs under high-frequency thermocapillary actuation. J Micromech Microeng 7:184–185

    Google Scholar 

  • Joanicot M, Ajdari A (2005) Droplet control for microfluidics. Appl Phys 309:887-888

    Google Scholar 

  • Kantz H, Schreiber T (2004) Nonlinear time series analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Mao X, Juluri BK, Lapsley MI, Stratton ZS, Huang, TJ (2010) Milliseconds microfluidic chaotic bubble mixer. Microfluid Nanofluid 8:139–144

    Article  Google Scholar 

  • Nguyen N-T, Wereley S (2002) Fundamentals and applications of microfluidics, 2nd edn. Integrated Microsystems Series. Artech House, London

  • Nguyen NT et al (2006) Optical detection for droplet size control in microfluidic droplet-based analysis systems. Sens Actuators B 117:431–436

    Article  Google Scholar 

  • Sapuppo F, Schembri F, Fortuna L, Bucolo M (2009) Microfluidic circuits and systems. Circuits Syst Mag IEEE 9:6–19

    Article  Google Scholar 

  • Sarrazin F, Prat L, Di Miceli N, Cristobal G, Link DR, Weitz DA (2007) Mixing characterization inside microdroplets engineered on a microcoalescer. Chem Eng Sci 62:1042–1048

    Article  Google Scholar 

  • Serizawa A, Feng Z, Kawara Z (2002) Two-phase flow in microchennels. Exp Thermal Fluid Sci 26:703–714

    Article  Google Scholar 

  • Sprott JC, Wereley S (2003) Chaos and time-series analysis. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Thompson JMT, Stewart HB (1989) Nonlinear dynamics and chaos. John Wiley and Sons, New York

  • Tice JD, Song H, Lyon AD, Ismagilov RF (2003) Formation of droplets and mixing in multiphase microfluidics at low values of the reynolds and capillary numbers. Langmuir 19:9127–9133

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  Google Scholar 

  • Willaime H, Barbier V, Kloul L, Tabeling P (2006) Arnold tongues in microfluidic drop emitter. Phys Rev Lett 96:054501-1–054501-4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florinda Schembri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schembri, F., Bucolo, M. Periodic input flows tuning nonlinear two-phase dynamics in a snake microchannel. Microfluid Nanofluid 11, 189–197 (2011). https://doi.org/10.1007/s10404-011-0786-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-011-0786-5

Keywords

Navigation