Skip to main content
Log in

Dissipative particle dynamics simulation of circular and elliptical particles motion in 2D laminar shear flow

  • Original Research
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The dissipative particle dynamics (DPD) method is a relatively new computational method for modeling the dynamics of particles in laminar flows at the mesoscale. In this study, we use the DPD approach to model the motion of circular and elliptical particles in a 2D shear laminar flow. Three examples are considered: (i) evaluation of the drag force exerted on a circular particle moving in a stagnant fluid, (ii) rotation of an elliptical particle around its center in a shear flow, and (iii) motion of an ellipsoidal particle in a linear shear flow. For all cases, we found a good agreement with theoretical and finite element solutions available. These results show that the DPD method can effectively be applied to model motion of micro/nano-particles at the mesoscale. The method proposed can be used to predict the performances of intravascularly administered particles for drug delivery and biomedical imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Choi YS, Thomas T, Kotlyar A, Islam MT, Baker JR (2005) Synthesis and functional evaluation of DNA—assembled polyamidoamine dendrimer clusters for cancer cell-specific targeting. Chem Biol 12:35–43. doi:10.1016/j.chembiol.2004.10.016

    Article  Google Scholar 

  • Chwang AT, Wu TY (1976) Hydromechanics of low-Reynolds-number flow. Part 4. Translation of spheroids. J Fluid Mech 75(4):677–689

    Article  MATH  Google Scholar 

  • Cohen MH, Melnik K, Boiarski AA, Ferrari M, Martin FJ (2003) Microfabrication of silicon-based nanoporous particulates for medical applications. Biomed Microdevices 5:253–259

    Article  Google Scholar 

  • Crommelin DJA, Schreier H (1994) Liposomes. In: Kreuter J (ed) Colloidal drug delivery systems. Marcel Dekker Inc, New York

    Google Scholar 

  • Decuzzi P, Ferrari M (2006) The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials 27(30):5307–5314

    Article  Google Scholar 

  • Decuzzi P, Lee S, Bhushan B, Ferrari M (2005) Theoretical model for the margination of particles within blood vessels. Ann Biomed Eng 32(6):793–802

    Article  Google Scholar 

  • Decuzzi P, Godin B, Tanaka T, Lee SY, Chiappini C, Liu X, Ferrari M (2010) Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 141(3):320–327

    Article  Google Scholar 

  • Duncan R (2003) The dawning era of polymer therapeutics. Nat RevDrug Discov 2:347–360

    Article  Google Scholar 

  • Espanol P, Warren PB (1995) Statistical mechanics of dissipative particle dynamics. Europhys Lett 30:191–196

    Article  Google Scholar 

  • Ferrari M (2005a) Nanovector therapeutics. Curr Opin Chem Biol 9(4):343–346

    Article  Google Scholar 

  • Ferrari M (2005b) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171

    Article  Google Scholar 

  • Filipovic N, Haber S, Kojic M and Tsuda A (2008) Dissipative particle dynamics simulation of flow generated by two rotating concentric cylinders. Part II: lateral dissipative and random forces. J Phys D Appl Phys 41:035504. doi:10.1088/0022-3727/41/3/035504

  • Filipovic N, Ivanovic M, Kojic M (2009) A comparative numerical study between dissipative particle dynamics (DPD) and smooth particle dynamics (SPH) when applied to simple unsteady flows. Microfluid Nanofluid 7(2):1613–4982

    Article  Google Scholar 

  • Fornberg B (1980) A numerical study of steady viscous flow past a circular cylinder. J Fluid Mech 98:819–855

    Article  MATH  Google Scholar 

  • Gavze E, Shapiro M (1996) Sedimentation of spheroidal particles in a vertical shear flow near a wall. J Aerosol Sci 27:585–586

    Article  Google Scholar 

  • Gavze E, Shapiro M (1997) Particles in a shear flow near a solid wall effect of nonsphericity on forces and velocities. Int J Multiphase Flow 23(1):155–182

    Article  MATH  Google Scholar 

  • Gavze E, Shapiro M (1998) Motion of inertial spheroidal particles in a shear flow near a solid wall with special application to aerosol transport in microgravity. J Fluid Mech 371:59–79

    Article  MATH  Google Scholar 

  • Groot RD, Warren PB (2006) Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107(11):4423–4435

    Article  Google Scholar 

  • Haber H, Filipovic N, Kojic M, Tsuda A (2006) Dissipative particle dynamics simulation of flow generated by two rotating concentric cylinders. Phys Rev E 74:1–8

    Article  Google Scholar 

  • Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19:155–160

    Article  Google Scholar 

  • Jeffery GB (1922) The motion of ellipsoidal particles immersed in a viscous fluid. Proc R Soc Lond A 102:161–180

    Article  Google Scholar 

  • LaVan DA, Mcguire T, Langer R (2003) Small-scale systems for in vivo drug delivery. Nat Biotechnol 21(10):1184–1191

    Article  Google Scholar 

  • Lee SY, Ferrari M, Decuzzi P (2009) Shaping nano-/micro-particles for enhanced vascular interaction in laminar flows. Nanotech 20(49):495101

    Article  Google Scholar 

  • Rapaport DC (2004) The art of molecular dynamics simulation, 2nd edn. Cambridge University Press

  • Rolland JP, Maynor BW, Euliss LE, Exner AE, Denison GM, DeSimone J (2005) Direct fabrication and harvesting of monodisperse, shape specific nano-biomaterials. J M J Am Chem Soc 127:10096–10100

    Article  Google Scholar 

  • van Dillen T, van Blaaderen A, Polman A (2004) Ion beam shaping of colloidal assemblies. Mater Today 40–46

  • Zhang L, Gerstenberger A, Wang X, Liu WK (2004) Immersed finite element method. Comput Methods Appl Mech Eng 193:2051–2067

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was supported by Ministry of Science and Technological Development of Republic Serbia, TR12007 and OI144028, The University of Texas Health Science Center at Houston project and EU FP7 ARTreat project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nenad Filipovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filipovic, N., Kojic, M. & Ferrari, M. Dissipative particle dynamics simulation of circular and elliptical particles motion in 2D laminar shear flow. Microfluid Nanofluid 10, 1127–1134 (2011). https://doi.org/10.1007/s10404-010-0742-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-010-0742-9

Keywords

Navigation