Skip to main content
Log in

Nanomanipulation of single influenza virus using dielectrophoretic concentration and optical tweezers for single virus infection to a specific cell on a microfluidic chip

  • Original Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

A major problem when analyzing bionanoparticles such as influenza viruses (approximately 100 nm in size) is the low sample concentrations. We developed a method for manipulating a single virus that employs optical tweezers in conjunction with dielectrophoretic (DEP) concentration of viruses on a microfluidic chip. A polydimethylsiloxane microfluidic chip can be used to stably manipulate a virus. The chip has separate sample and analysis chambers to enable quantitative analysis of the virus functions before and after it has infected a target cell. The DEP force in the sample chamber concentrates the virus and prevents it from adhering to the glass substrate. The concentrated virus is transported to the sample selection section where it is trapped by optical tweezers. The trapped virus is transported to the analysis chamber and it is brought into contact with the target cell to infect it. This paper describes the DEP virus concentration for single virus infection of a specific cell. We concentrated the influenza virus using the DEP force, transported a single virus, and made it contact a specific H292 cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amato I (2005) Nanotechnologists seek biological niches. Cell 123:967–970. doi:10.1016/j.cell.2005.12.001

    Article  Google Scholar 

  • Arai F, Ichikawa A, Ogawa M, Fukuda T, Horio K, Itoigawa K (2001) High-speed separation system of randomly suspended single living cells by laser trap and dielectrophoresis. Electrophoresis 22:283–288. doi:10.1002/1522-2683(200101)22:2<283:AID-ELPS283>3.0.CO;2-C

    Article  Google Scholar 

  • Arai F, Ichikawa A, Fukuda T, Katsuragi T (2003) Isolation and extraction of target microbes using thermal sol–gel transformation. Analyst 128:547–551. doi:10.1039/b212919a

    Article  Google Scholar 

  • Arai F, Kotani K, Maruyama H (2009) On-chip robotics for biomedical innovation: manipulation of single virus on a chip. Proc IEEE NANO 2009:571–574

    Google Scholar 

  • Arthur A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single beam gradient force optical trap for dielectric particles. Opt Lett 11:288–290. doi:10.1364/OL.11.000288

    Article  Google Scholar 

  • Castillo J, Dimaki M, Svendsen EW (2009) Manipulation of biological samples using micro and nano techniques. Integr Biol 1:30–42. doi:10.1039/b814549k

    Article  Google Scholar 

  • Ichikawa A, Arai F, Yoshikawa K, Uchida T, Fukuda T (2005) In situ formation of a gel microbead for indirect laser micromanipulation of microorganisms. Appl Phys Lett 87:191108-1–191108-3. doi:10.1063/1.2126800

    Google Scholar 

  • Ichikawa A, Honda A, Ejima M, Tanikawa T, Arai F, Fukuda T (2007) In situ formation of a gel microbead for laser micromanipulation of microorganisms, DNA, and viruses. J Robot Mechatron 19:569–576

    Google Scholar 

  • Ishikawa M, Misawa H, Kitamura N, Masuhara H (1993) Poly (N-isopropylacrylamide) microparticle formation in water by infrared laser-induced photo-thermal phase transition. Chem Lett 22:481–484. doi:10.1246/cl.1993.481

    Article  Google Scholar 

  • Kim MS, Lee HS, Suh KY (2008) Cell research with physically modified microfluidic channels: a review. Lab Chip 8:1015–1023. doi:10.1039/b800835c

    Article  Google Scholar 

  • Kuhara M, Takeyama H, Tanaka T, Matsunaga T (2004) Magnetic cell separation using antibody binding with protein A expressed on bacterial magnetic particles. Anal Chem 76:6207–6213. doi:10.1021/ac0493727

    Article  Google Scholar 

  • Maruyama H, Arai F, Fukuda T, Katsuragi T (2005) Immobilization of individual cells by local photo-polymerization on a chip. Analyst 130:304–310. doi:10.1039/b415400m

    Article  Google Scholar 

  • Maruyama H, Arai F, Fukuda T (2008) On-chip pH measurement using functionalized gel-microbeads positioned by optical tweezers. Lab Chip 8:346–351. doi:10.1039/b712566f

    Article  Google Scholar 

  • Müller T, Fiedler S, Schnelle T, Ludwig K, Jung H, Fuhr G (1996) High frequency electric fields for trapping of viruses. Biotechnol Tech 10:221–226. doi:10.1007/BF00184018

    Article  Google Scholar 

  • Parvin DJ, Palese P, Honda A, Ishihama A, Krystal M (1989) Promoter analysis of influenza virus RNA polymerase. J Virol 63:5142–5152

    Google Scholar 

  • Schnelle T, Müller T, Gradl G, Shirly GS, Fuhr G (2000) Dielectrophoretic manipulation of suspended submicron particles. Electrophoresis 21:66–73. doi:10.1002/(SICI)1522-2683(20000101)21:1<66:AID-ELPS66>3.0.CO;2-A

    Article  Google Scholar 

  • Shinya S, Yamanishi Y, Arai F (2009) Magnetically driven microtools actuated by a focused magnetic field for separating of microparticles. J Robot Mechatron 21:209–215

    Google Scholar 

  • Stanley MW (1944) The size of influenza virus. J Exp Med 79:267–283. doi:10.1084/jem.79.3.267

    Article  Google Scholar 

  • Yamanishi Y, Sakuma S, Onda K, Arai F (2008) Biocompatible polymeric magnetically driven microtool for particle sorting. J Micro Nano Mechatron 4:49–57. doi:10.1007/s12213-008-0009-7

    Article  Google Scholar 

Download references

Acknowledgment

This work was partially supported by Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Corporation (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisataka Maruyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maruyama, H., Kotani, K., Masuda, T. et al. Nanomanipulation of single influenza virus using dielectrophoretic concentration and optical tweezers for single virus infection to a specific cell on a microfluidic chip. Microfluid Nanofluid 10, 1109–1117 (2011). https://doi.org/10.1007/s10404-010-0739-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-010-0739-4

Keywords

Navigation