Skip to main content
Log in

Controlling electroosmotic flow by polymer coating: a dissipative particle dynamics study

  • Original Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We have performed dissipative particle dynamics (DPDs) simulations of electroosmotic flow (EOF) through a polymer-grafted nanopore. In this model, charged particles including salt ions and counterions are not included explicitly, and EOF is created using an effective boundary condition. The screening effect of polymer layer on EOF is investigated in detail under different solvent qualities and boundary electroosmotic velocities. Results show that the solvent quality has a significant effect on the conformational properties of polymer chains and the flow characteristics of the solvent. The polymer layer undergoes a collapsed transition when decreasing the solvent quality from good to poor. Under different solvent qualities, enhancing the EOF leads to a different variation tendency of the layer thickness. The solvent-induced permeability change is inconsistent with the steady velocity away from the surface. The minimum value of the solvent permeability occurs at an intermediate solvent quality. However, the layer thickness drops gradually to a smallest value (corresponding to the largest effective pore radius) in the poor solvent condition. It is also found that the polymer inclination and stretching length exhibit a complex behavior under the combined effect of solvent quality and electroosmosis-induced shear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adiga SP, Brenner DW (2005) Flow control through polymer-grafted smart nanofluidic channels: molecular dynamics simulations. Nano Lett 5:2509–2514

    Article  Google Scholar 

  • Alexander S (1977) Adsorption of chain molecules with a polar head a scaling description. J Phys (France) 38:983–987

    Article  Google Scholar 

  • Ballauff M, Borisov O (2006) Polyelectrolyte brushes. Curr Opin Colloid Interface Sci 11:316–323

    Article  Google Scholar 

  • Brinks MK, Studer A (2009) Polymer brushes by nitroxide-mediated polymerization. Macromol Rapid Commun 30:1043–1057

    Article  Google Scholar 

  • Cao Q, Zuo C, Li L, Ma Y, Li N (2010) Electroosmotic flow in a nanofluidic channel coated with neutral polymers. Microfluid Nanofluid. doi: 10.1007/s10404-010-0620-5

  • Cheng JT, Giordano N (2002) Fluid flow through nanometer-scale channels. Phys Rev E 65:031206

    Article  Google Scholar 

  • de Gennes PG (1980) Conformations of polymers attached to an interface. Macromolecules 13:1069–1075

    Article  Google Scholar 

  • de Gennes PG (1987) Polymers at an interface: a simplified view. Adv Colloid Interface Sci 27:189–209

    Article  Google Scholar 

  • Dimitrov DI, Milchev A, Binder K (2007) Polymer brushes in solvents of variable quality: molecular dynamics simulations using explicit solvent. J Chem Phys 127:084905

    Article  Google Scholar 

  • Dobrynin AV, Rubinstein M (2005) Theory of polyelectrolytes in solutions and at surfaces. Prog Polym Sci 30:1049–1118

    Article  Google Scholar 

  • Doherty EAS, Berglund KD, Buchholz BA, Kourkine IV, Przybycien TM, Tilton RD, Barron AE (2002) Critical factors for high-performance physically adsorbed (dynamic) polymeric wall coatings for capillary electrophoresis of DNA. Electrophoresis 23:2766–2776

    Article  Google Scholar 

  • Duong-Hong D, Phan-Thien N, Fan XJ (2004) An implementation of no-slip boundary conditions in DPD. Comput Mech 35:24–29

    Article  MATH  Google Scholar 

  • Duong-Hong D, Wang JS, Liu GR, Chen YZ, Han J, Hadjiconstantinou NG (2008) Dissipative particle dynamics simulations of electroosmotic flow in nano-fluidic devices. Microfluid Nanofluid 4:219–225

    Article  Google Scholar 

  • Edmondson S, Osborne VL, Huck WTS (2004) Polymer brushes via surface-initiated polymerizations. Chem Soc Rev 33:14–22

    Article  Google Scholar 

  • Español P, Warren P (1995) Statistical mechanics of dissipative particle dynamics. Europhys Lett 30:191–196

    Article  Google Scholar 

  • Goujon F, Malfreyt P, Tildesley DJ (2009) Mesoscopic simulation of entangled polymer brushes under shear: compression and rheological properties. Macromolecules 42:4310–4318

    Article  Google Scholar 

  • Grest GS (1994) Grafted polymer brushes: a constant surface pressure molecular dynamics simulation. Macromolecules 27:418–426

    Article  Google Scholar 

  • Groot RD (2003) Electrostatic interactions in dissipative particle dynamics-simulation of polyelectrolytes and anionic surfactants. J Chem Phys 118:11265–11277

    Article  Google Scholar 

  • Groot RD, Rabone KL (2001) Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. Biophys J 81:725–736

    Article  Google Scholar 

  • Groot RD, Warren PB (1997) Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107:4423–4435

    Article  Google Scholar 

  • Harden JL, Long D, Ajdari A (2001) Influence of end-grafted polyelectrolytes on electro-osmosis along charged surfaces. Langmuir 17:705–715

    Article  Google Scholar 

  • Hickey OA, Harden JL, Slater GW (2009) Molecular dynamics simulations of optimal dynamic uncharged polymer coatings for quenching electro-osmotic flow. Phys Rev Lett 102:108304

    Article  Google Scholar 

  • Hockney RW, Eastwood JW (1988) Computer simulation using particles. Adam Hilger, Bristol

    Book  MATH  Google Scholar 

  • Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19:155–160

    Article  Google Scholar 

  • Hu Y, Werner C, Li D (2003) Electrokinetic transport through rough microchannels. Anal Chem 75:5747–5758

    Article  Google Scholar 

  • Huang JH, Wang YM, Laradji M (2006) Flow control by smart nanofluidic channels: a dissipative particle dynamics simulation. Macromolecules 39:5546–5554

    Article  Google Scholar 

  • Irfachsyad D, Tildesley D, Malfreyt P (2002) Dissipative particle dynamics simulation of grafted polymer brushes under shear. Phys Chem Chem Phys 4:3008–3015

    Article  Google Scholar 

  • Joseph P, Tabeling P (2005) Direct measurement of the apparent slip length. Phys Rev E 71:035303

    Article  Google Scholar 

  • Kim D, Darve E (2006) Molecular dynamics simulation of electro-osmotic flows in rough wall nanochannels. Phys Rev E 73:051203

    Article  Google Scholar 

  • Kim G, Park S, Jung J, Heo K, Yoon J, Kim H, Kim IJ, Kim JR, Lee JI, Ree M (2009) Novel brush polymers with phosphorylcholine bristle ends: synthesis, structure, properties, and biocompatibility. Adv Funct Mater 19:1631–1644

    Article  Google Scholar 

  • Kreer T, Muser MH, Binder K, Klein J (2001) Frictional drag mechanisms between polymer-bearing surfaces. Langmuir 17:7804–7813

    Article  Google Scholar 

  • Krishnamoorthy S, Feng J, Henry AC, Locascio LE, Hickman JJ, Sundaram S (2006) Simulation and experimental characterization of electroosmotic flow in surface modified channels. Microfluid Nanofluid 2:345–355

    Article  Google Scholar 

  • Lai P-Y, Binder K (1993) Grafted polymer layers under shear: a Monte Carlo simulation. J Chem Phys 98:2366–2375

    Article  Google Scholar 

  • Ma D, Chen HW, Shi DY, Li ZM, Wang JF (2009) Preparation and characterization of thermo-responsive PDMS surfaces grafted with poly(N-isopropylacrylamide) by benzophenone-initiated photopolymerization. J Colloid Interface Sci 332:85–90

    Article  Google Scholar 

  • Miao L, Guo H, Zuckermann MJ (1996) Conformation of polymer brushes under shear: chain tilting and stretching. Macromolecules 29:2289–2297

    Article  Google Scholar 

  • Murat M, Grest GS (1989) Interaction between grafted polymeric brushes: a molecular-dynamics study. Phys Rev Lett 63:1074–1077

    Article  Google Scholar 

  • Napper DH (1983) Polymer stabilization of colloidal dispersions. Academic Press, London

    Google Scholar 

  • Pagonabarraga I, Rotenberg B, Frenkel D (2010) Recent advances in the modelling and simulation of electrokinetic effects: bridging the gap between atomistic and macroscopic descriptions. Phys Chem Chem Phys 12:9566–9580

    Article  Google Scholar 

  • Paumier G, Sudor J, Gue AM, Vinet F, Li M, Chabal YJ, Esteve A, Djafari-Rouhani M (2008) Nanoscale actuation of electrokinetic flows on thermoreversible surfaces. Electrophoresis 29:1245–1252

    Article  Google Scholar 

  • Pennathur S, Santiago JG (2005) Electrokinetic transport in nanochannels. 2. Experiments. Anal Chem 77:6782–6789

    Article  Google Scholar 

  • Peters GH, Tildesley DJ (1995) Computer simulation of the rheology of grafted chains under shear. Phys Rev E 52:1882–1890

    Article  Google Scholar 

  • Pit R, Hervet H, Leger L (2000) Direct experimental evidence of slip in hexadecane: solid interfaces. Phys Rev Lett 85:980–983

    Article  Google Scholar 

  • Pivkin IV, Karniadakis GE (2005) A new method to impose no-slip boundary conditions in dissipative particle dynamics. J Comput Phys 207:114–128

    Article  MATH  MathSciNet  Google Scholar 

  • Qiao R (2006) Control of electroosmotic flow by polymer coating: effects of the electrical double layer. Langmuir 22:7096–7100

    Article  Google Scholar 

  • Qiao R, He P (2007) Modulation of electroosmotic flow by neutral polymers. Langmuir 23:5810–5816

    Article  Google Scholar 

  • Raviv U, Giasson S, Kampf N, Gohy J-F, Jerome R, Klein J (2003) Lubrication by charged polymers. Nature 425:163–165

    Article  Google Scholar 

  • Rühe J, Ballauff M, Biesalski M, Dziezok P, Grohn F, Johannsmann D, Houbenov N, Hugenberg N, Konradi R, Minko S, Motornov M, Netz RR, Schmidt M, Seidel C, Stamm M, Stephan T, Usov D, Zhang HN (2004) Polyelectrolyte brushes. Adv Polym Sci 165:79–150

    Google Scholar 

  • Sherwood P, Brooks BR, Sansom MSP (2008) Multiscale methods for macromolecular simulations. Curr Opin Struct Biol 18:630–640

    Article  Google Scholar 

  • Sirchabesan M, Giasson S (2007) Mesoscale simulations of the behavior of charged polymer brushes under normal compression and lateral shear forces. Langmuir 23:9713–9721

    Article  Google Scholar 

  • Smiatek J, Schmid F (2010) Polyelectrolyte electrophoresis in nanochannels: a dissipative particle dynamics simulation. J Phys Chem B 114:6266–6272

    Article  Google Scholar 

  • Smiatek J, Sega M, Holm C, Schiller UD, Schmid F (2009) Mesoscopic simulations of the counterion-induced electro-osmotic flow: a comparative study. J Chem Phys 130:244702

    Article  Google Scholar 

  • Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977–1026

    Article  Google Scholar 

  • Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411

    Article  Google Scholar 

  • Tessier F, Slater GW (2006) Modulation of electroosmotic flow strength with end-grafted polymer chains. Macromolecules 39:1250–1260

    Article  Google Scholar 

  • Thompson PA, Troian SM (1997) A general boundary condition for liquid flow at solid surfaces. Nature 389:360–362

    Article  Google Scholar 

  • Vincent B (1974) The effect of adsorbed polymers on dispersion stability. Adv Colloid Interface Sci 4:193–277

    Article  Google Scholar 

  • Wang XY, Cheng C, Wang SL, Liu SR (2009) Electroosmotic pumps and their applications in microfluidic systems. Microfluid Nanofluid 6:145–162

    Article  Google Scholar 

  • Wong I, Ho CM (2009) Surface molecular property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices. Microfluid Nanofluid 7:291–306

    Article  Google Scholar 

  • Wu S (1982) Polymer interface and adhesion. Marcel Dekker, New York

    Google Scholar 

  • Wu DP, Qin JH, Lin BC (2007) Self-assembled epoxy-modified polymer coating on a poly(dimethylsiloxane) microchip for EOF inhibition and biopolymers separation. Lab Chip 7:1490–1496

    Article  Google Scholar 

  • Yan LT, Zhang XJ (2009) Dissipative particle dynamics simulations on overcharged cylindrical polyelectrolyte brushes with multivalent counterions. Soft Matter 5:2101–2108

    Article  Google Scholar 

  • Zhao B, Brittain WJ (2000) Polymer brushes: surface-immobilized macromolecules. Prog Polym Sci 25:677–710

    Article  Google Scholar 

Download references

Acknowledgment

This study was supported by the National Natural Science Foundation of China (No. 30770501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianqian Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Q., Zuo, C., Li, L. et al. Controlling electroosmotic flow by polymer coating: a dissipative particle dynamics study. Microfluid Nanofluid 10, 977–990 (2011). https://doi.org/10.1007/s10404-010-0726-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-010-0726-9

Keywords

Navigation