Skip to main content
Log in

Particle transport in flow through a ratchet-like channel

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We present a fluidic device that shows ratchet-like characteristics for particle transport at low Reynolds. The ratchet consists of a two-dimensional saw-tooth channel, within which a laminar flow is generated by imposing a longitudinal pressure gradient. Particle trajectories are calculated by solving the continuity and Navier–Stokes equations for the fluid flow and the equations for particle transport in both flow directions. The ratchet-like effect is connected with a large asymmetry in the mean transit time, with regard to flow direction, due to particle motion within zones of low flow velocity near the asymmetric wall profile. We show how to obtain ratchet of particles with select Stokes under given flow conditions by adjusting the geometry of the ratchet channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. A parabolic profile is achieved within the first segment of the channel at a distance of ≈\(l/5\) from the entrance of the smooth segment, i.e. prior to the launch position of the particles. Thus, we perform the simulations of this work by taking, for simplicity, a parabolic flow profile at the inlet boundary.

  2. The governing differential equations are discretized in a computational mesh and numerically solved here using FLUENT 6 [Fluent Inc., FLUENT 6.1, 6.2 User’s Guide (2003, 2005)].

References

  • Adjari A (2002) Electrokinetic ‘ratchet’ pumps for microfluidics. Appl Phys A 75:271–274

    Article  Google Scholar 

  • Almeida MP, Andrade JS Jr, Herrmann HJ (2006) Aeolian transport layer. Phys Rev Lett 96:018001

    Article  Google Scholar 

  • Almeida MP, Parteli EJR, Andrade JS Jr, Herrmann HJ (2008) Giant saltation on Mars. Proc Natl Acad Sci 105:6222–6226

    Article  Google Scholar 

  • Araújo AD, Andrade JS Jr, Herrmann HJ (2006) Critical role of gravity in filters. Phys Rev Lett 97:138001

    Article  Google Scholar 

  • Austin RH, Darnton N, Huang R, Sturm J, Bakajin O, Duke T (2002) Ratchets: the problems with boundary conditions in insulating fluids. Appl Phys A 75:279–284

    Article  Google Scholar 

  • Bader JS, Hammond RW, Henck SA, Deem MW, McDermott GA, Bustillo JM, Simpson JW, Mulhern GT, Rothbert JM (1999) DNA transport by a micromachined Brownian ratchet device. Proc Natl Acad Sci 96:13165–13169

    Article  Google Scholar 

  • Buguin A, Talini L, Silberzan P (2002) Ratchet-like topological structures for the control of microdrops. Appl Phys A 75:207–212

    Article  Google Scholar 

  • Comer JK, Kleinstreuer C, Kim CS (2001a) Flow structures and particle deposition patterns in double-bifurcation airway models. Part 1. Air flow fields. J Fluid Mech 435:25–54

    Google Scholar 

  • Comer JK, Kleinstreuer C, Kim CS (2001b) Flow structures and particle deposition patterns in double-bifurcation airway models. Part 2. Aerosol transport and deposition. J Fluid Mech 435:25–54

    Google Scholar 

  • Dean Astumian R (1997) Thermodynamics and Kinetics of a Brownian motor. Science 276:917:922

    Article  Google Scholar 

  • Derényi I, Dean Astumian R (1998) ac separation of particles by biased Brownian motion in a two-dimensional sieve. Phys Rev E 58:7781–7784

    Article  Google Scholar 

  • Di Carlo D, Edd JF, Irimia D, Tompkins RG, Toner M (2008) Equilibrium separation and filtration of particles using differential inertial focusing. Anal Chem 80:2204–2211

    Article  Google Scholar 

  • Effenhauser CS, Manz A, Michael Widmer H (1995) Manipulation of sample fractions on a capillary electrophoresis chip. Anal Chem 67:2284–2287

    Article  Google Scholar 

  • Ertaş D (1998) Lateral separation of macromolecules and polyelectrolytes in microlithographiic arrays. Phys Rev Lett 80:1548–1551

    Article  Google Scholar 

  • Faucheux LP, Bourdieu LS, Kaplan PD, Libchaber AJ (1995) Optical thermal ratchet. Phys Rev Lett 74:1504–1507

    Article  Google Scholar 

  • Gorre-Talini S, Jeanjean S, Silberzan P (1997) Sorting of Brownian particles by the pulsed application of an asymmetric potential. Phys Rev E 56:2025–2034

    Article  Google Scholar 

  • Grimm A, Stark H, van Maarel JRC (2009) Model for a Brownian ratchet with improved characteristics for particle separation. Phys Rev E 79:061102

    Article  Google Scholar 

  • Herrmann HJ, Andrade JS Jr, Araújo AD, Almeida MP (2006) Transport of particles in fluids. Phys A 372:374–386

    Article  Google Scholar 

  • Huang LR, Silberzan P, Tegenfeldt JO, Cox EC, Sturm JC, Austin RH, Craighead H (2002) Role of molecular size in ratchet fractionation. Phys Rev Lett 89:178301

    Article  Google Scholar 

  • Huang LR, Cox EC, Austin RH, Sturm JC (2004) Continuous particle separation through deterministic lateral displacement. Science 304:987-990

    Article  Google Scholar 

  • Imdakm AO, Sahimi M (1987) Transport of large particles in flow through porous media. Phys Rev A 36:5304–5309

    Article  Google Scholar 

  • Keller C, Marquardt F, Bruder C (2002) Separation quality of a geometric ratchet. Phys Rev E 65:041927

    Article  Google Scholar 

  • Kettner C, Reimann P, Hänggi P, Müller F (2000) Drift ratchet. Phys Rev E 61:312–323

    Article  Google Scholar 

  • Kralj JG, Lis MTW, Schmidt MA, Jensen KF (2006) Continuous dielectrophoretic size-based particle sorting. Anal Chem 78: 5019–5025

    Article  Google Scholar 

  • Loutherback K, Puchalla J, Austin RH, Sturm JC (2009) Deterministic microfluidic ratchet. Phys Rev Lett 102:045301

    Article  Google Scholar 

  • Magnasco MO (1993) Forced thermal ratchets. Phys Rev Lett 71:1477-1481

    Article  Google Scholar 

  • Matthias S, Müller F (2003) Asymmetric pores in a silicon membrane acting as massively parallel brownian ratchets. Nature 424:53–57

    Article  Google Scholar 

  • Morsi SA, Alexander AJ (1972) An investigation of particle trajectories in two-phase flow systems. J Fluid Mech 55:193–208

    Article  MATH  Google Scholar 

  • Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere, Washington

    MATH  Google Scholar 

  • Reimann P (2002) Brownian motors: noisy transport far from equilibrium. Phys Rep 361:57–265

    Article  MATH  MathSciNet  Google Scholar 

  • Sahimi M (1995) Flow and transport in porous media and fractured rock. VCH, Boston

  • Smith KA, Alexeev A, Verberg R, Balazs AC (2006) Designing a simple ratcheting system to sort microcapsules by mechanical properties. Langmuir 22:6739–6742

    Article  Google Scholar 

  • Takagi J, Yamada M, Yasuda M, Seki M (2005) Continuous particle separation in a microchannel having asymmetrically arranged multiple branches. Lab Chip 5:778-784

    Article  Google Scholar 

  • van Oudenaarden A, Boxer SG (1999) Brownian ratchet: molecular separations in liquid bilayers supported on patterned arrays. Science 285:1046-1048

    Article  Google Scholar 

  • Vasconcelos TF, Araújo AD, Almeida MP, Andrade JS Jr (2009) Particle transport in rough channels. Int J Mod Phys C 20:1199–1209

    Article  MATH  Google Scholar 

  • Vasconcelos TF, Morais AF, Cisne RLC Jr, Parteli EJR, Andrade JS Jr (2010) Particle separation in a ramified structure. Chem Eng Sci 65:1400–1406

    Article  Google Scholar 

  • Wickramasinghe SR, Lin WC, Dandy DS (2001) Separation of different sized particles by inertial migration. Biotech Lett 23:1417–1422

    Article  Google Scholar 

  • Yamada M, Nakashima M, Seki M (2004) Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal Chem 76:5465–5471

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge Antônio J. C. Sampaio for discussions and helpful comments. We also thank Josué Mendes Filho for stimulating remarks. This research was supported by CAPES, CNPq, FUNCAP and FINEP (Brazilian agencies), and CNPq/FUNCAP Pronex grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José S. Andrade Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cisne, R.L.C., Vasconcelos, T.F., Parteli, E.J.R. et al. Particle transport in flow through a ratchet-like channel. Microfluid Nanofluid 10, 543–550 (2011). https://doi.org/10.1007/s10404-010-0688-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-010-0688-y

Keywords

Navigation