Microfluidics and Nanofluidics

, Volume 9, Issue 6, pp 1143–1149

Improved performance of deterministic lateral displacement arrays with triangular posts

  • Kevin Loutherback
  • Kevin S. Chou
  • Jonathan Newman
  • Jason Puchalla
  • Robert H. Austin
  • James C. Sturm
Research Paper

Abstract

Deterministic lateral displacement arrays have shown great promise for size-based particle analysis and purification in medicine and biology. Here, we demonstrate that the use of an array of triangular rather than circular posts significantly enhances the performance of these devices by reducing clogging, lowering hydrostatic pressure requirements, and increasing the range of displacement characteristics. Experimental data and theoretical models are presented to create a compelling argument that future designs of deterministic lateral displacement arrays should employ triangular posts. The effect of practical considerations, such as vertex rounding, post size, and shape, is also discussed.

Keywords

Lateral displacement Particle separation Throughput Clogging Triangular posts 

References

  1. Beech JP, Tegenfeldt JO (2008) Tunable separation in elastomeric microfluidics devices. Lab Chip 8:657–659CrossRefGoogle Scholar
  2. Beech JP, Jönsson P, Tegenfeldt JO (2009) Tipping the balance of deterministic lateral displacement devices using dielectrophoresis. Lab Chip 9:2698–2706CrossRefGoogle Scholar
  3. Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2008) Continuous particle separation in spiral microchannels using Dean flows and differential migration. Lab Chip 8:1906–1914CrossRefGoogle Scholar
  4. Davis JA, Inglis DW, Morton KJ et al (2006) Deterministic hydrodynamics: taking blood apart. PNAS 103(40):14779–14784CrossRefGoogle Scholar
  5. Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. PNAS 104(48):18892–18897CrossRefGoogle Scholar
  6. Huang LR, Cox EC, Austin RH, Sturm JC (2004) Continuous particle separation through deterministic lateral displacement. Science 304:987–990CrossRefGoogle Scholar
  7. Inglis DW, Davis JA, Austin RH, Sturm JC (2006) Critical particle size for fractionation by deterministic lateral displacement. Lab Chip 6:655–658CrossRefGoogle Scholar
  8. Lindken R, Rossi M, Große S, Westerweel J (2009) Micro-particle image velocimetry (micropiv): recent developments, applications, and guidelines. Lab Chip 9:2551–2567CrossRefGoogle Scholar
  9. Loutherback K, Puchalla J, Austin RH, Sturm JC (2009) Deterministic microfluidic ratchet. Phys Rev Lett 102:045301CrossRefGoogle Scholar
  10. Lu H, Gaudet S, Schmidt MA, Jensen KF (2004) A microfabricated device for subcellular organelle sorting. Anal Chem 76:5705–5712CrossRefGoogle Scholar
  11. Morton KJ, Sturm JC, Austin RH, Chou SY (2006) Proceedings of the μTAS conference 2006, Tokyo, pp 1014–1016Google Scholar
  12. Pamme N (2007) Continuous flow separations in microfluidic devices. Lab Chip 7:1644–1659CrossRefGoogle Scholar
  13. Rida A, Gijs MAM (2004) Manipulation of self-assembled structures of magnetic beads for microfluidic mixing and assaying. Anal Chem 76:6239–6246CrossRefGoogle Scholar
  14. Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977–1026CrossRefGoogle Scholar
  15. White FM (2006) Viscous fluid flow, 3rd edn. McGraw Hill, New York, pp 108, 165–171Google Scholar
  16. Yi CQ, Li CW, Ji SL, Yang MS (2006) Microfluidics technology for manipulation and analysis of biological cells. Anal Chim Acta 560:1–23CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Kevin Loutherback
    • 1
    • 2
  • Kevin S. Chou
    • 2
  • Jonathan Newman
    • 2
  • Jason Puchalla
    • 3
  • Robert H. Austin
    • 1
    • 3
  • James C. Sturm
    • 1
    • 2
  1. 1.Princeton Institute for the Science and Technology of Materials (PRISM)Princeton UniversityPrincetonUSA
  2. 2.Department of Electrical EngineeringPrinceton UniversityPrincetonUSA
  3. 3.Department of PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations