Skip to main content
Log in

Super permeable nano-channel membranes defined with laser interferometric lithography

  • Short Communication
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We report the design, fabrication, and testing of super permeable nano-channel membranes, characterized by the absolute control in the pore size at the nano-scale dimensions, large surface area, very high permeability, mechanical stability and durability. The membranes were fabricated using a unique nanotechnology process that combines laser interferometric lithography to define nano-channels (pores) and micro-machining to produce free-standing amorphous silicon membranes, allowing rapid and cost-effective mass production. The suspended membranes were defined as 50 nm thick a-Si, characterized by a very high porosity of approximately 20%, achieved by definition of large arrays of nano-channels. The dimensions of each individual nano-channel was 65 nm wide, 250 nm long. The measured apparent permeability was 0.14 ± 0.05 cm/min for each individual 70 μm × 70 μm membrane, representing one of the highest permeability values ever reported for this scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Baker LA, Choi YS et al (2006) Nanopore membranes for biomaterials synthesis, biosensing and bioseparations. Curr Nanosci 2(3):243–255

    Google Scholar 

  • Brueck SRJ (2005) Optical and interferometric lithography—nanotechnology enablers. Proc IEEE 93:1704–1721

    Article  Google Scholar 

  • Chen W, Ahmed H (1993) Fabrication of 5–7 nm wide etched lines in silicon using 100 keV electron-beam lithography and polymethylmethacrylate resist. Appl Phys Lett 62:1499–1501

    Article  Google Scholar 

  • Desai TA, Hansford DJ, Ferrari M (2000a) Micromachined interfaces: new approaches in cell immunoisolation and biomolecular separation. Biomol Eng 17:23–36

    Article  Google Scholar 

  • Desai TA, Hansford DJ, Leoni L, Essenpreis M, Ferrari M (2000b) Nanoporous anti-fouling silicon membranes for biosensor applications. Biosens Bioelectron 15:453–462

    Article  Google Scholar 

  • Elman NM, Krylov S et al (2008) Multiple aspect-ratio structural integration in single crystal silicon (MASIS) for fabrication of transmissive MOEMS modulators. Microsyst Technol 14(2):287–293

    Article  Google Scholar 

  • Gourgona C, Chaix N, Schift H, Tormen M, Landis S, Sotomayor Torres CM, Kristensen A, Pedersen RH, Christiansen MB, Fernandez-Cuesta I, Mendels D, Montelius L, Haatainen T (2007) Benchmarking of 50 nm features in thermal nanoimprint. J Vac Sci Technol B 25:2373–2378

    Article  Google Scholar 

  • Heidari B, Maximov I, Sarwe E-L, Montelius L, Heidari B, Maximov I, Sarwe E-L, Montelius L (2000) Nanoimprint lithography at the 6 in. wafer scale. J Vac Sci Technol B 18:3557–3560

    Article  Google Scholar 

  • Hinds BJ, Chopra N et al (2004) Aligned multiwalled carbon nanotube membranes. Science 303(5654):62–65

    Article  Google Scholar 

  • Karttunen J, Kiihamaki J et al (2000) Loading effects in deep silicon etching. Micromachining and microfabrication process technology VI, vol 4174, pp 90–97, 524

  • Kuiper S, van Rijn CJM, Nijdam W, Elwenspoek MC (1998) Development and applications of very high flux microfiltration membranes. J Membr Sci 150:1–8

    Article  Google Scholar 

  • Kuiper S, Brink R, Nijdam W, Krijnen GJM, Elwenspoek MC (2002) Ceramic microsieves: influence of perforation shape and distribution on flow resistance and membrane strength. J Membr Sci 196:149–157

    Article  Google Scholar 

  • Lee SC, Brueck SRJ (2004) Nanoscale two-dimensional patterning on Si (001) by large-area interferometric lithography and anisotropic wet etching. J Vac Sci Technol 22:1949–1952

    Article  Google Scholar 

  • Martin CR, Kohli P (2003) The emerging field of nanotube biotechnology. Nat Rev Drug Discov 2(1):29–37

    Article  Google Scholar 

  • Robertson-Tessi M, Wild RJ, Cronin AD, Savas T (2006) Cleaning silicon nitride gratings with liquid immersion. J Vac Sci Technol B 24:1409–1412

    Article  Google Scholar 

  • Savas TA, Schattenburg ML, Carter JM, Smith HI (1996) Large-area achromatic interferometric lithography for 100 nm period gratings and grids. J Vac Sci Technol B 14:4167–4170

    Article  Google Scholar 

  • Striemer CC, Gaborski TR, McGrath JL, Fauchet PM (2007) Charge- and size-based separation of macromolecules using ultrathin silicon membranes. Nature 445:749–753

    Article  Google Scholar 

  • Sun H-W, Liu J-Q (2005) Optimization and experimentation of nanoimprint lithography based on FIB fabricated stamp. Microelectron Eng 82(2):175–179

    Article  Google Scholar 

  • Tong HD, Jansen HV, Gadgil VJ, Bostan CG, Berenschot E, van Rijn CJM, Elwenspoek M (2004) Silicon nitride nanosieve membrane. Nano Lett 4:283–287

    Article  Google Scholar 

  • Unnikrishnan S et al (2009) Transition flow through an ultra-thin nanosieve. Nanotechnology 20:305304

    Google Scholar 

  • Van Rijn CJM et al (1998) Nanosieves with microsystem technology for microfiltration applications. Nanotechnology 9:343–345

    Article  Google Scholar 

  • Van T, Vandecasteelea C, Buekenhoudtb A, Dotremontb C, Luytenb J, Leysenb R, Van der Bruggena B, Maesc G (2002) Alumina and titania multilayer membranes for nanofiltration: preparation, characterization and chemical stability. J Membr Sci 207:73–89

    Google Scholar 

  • Wirtz M, Parker M et al (2002a) Molecular sieving and sensing with gold nanotube membranes. Chem Rec 2(4):259–267

    Article  Google Scholar 

  • Wirtz M, Parker M et al (2002b) Template-synthesized nanotubes for chemical separations and analysis. Chem Eur J 8(16):3573–3578

    Article  Google Scholar 

  • Yamaguchi A, Uejo F et al (2004) Self-assembly of a silica-surfactant nanocomposite in a porous alumina membrane. Nat Mater 3(5):337–341

    Article  Google Scholar 

  • Yang X, Mo Yang J, Tai Y-C, Ho C-M (1999) Micromachined membrane particle filters. Sens Actuators A 73(1–2):184–191

    Google Scholar 

  • Yang SY, Ryu I, Kim HY, Kim JK, Jang SK, Russell TP (2006) Nanoporous membranes with ultrahigh selectivity and flux for the filtration of viruses. J Adv Mater 18:709–712

    Article  Google Scholar 

  • Zaidi SH, Brueck SRJ (1988) High aspect-ratio holographic photoresist gratings. Appl Opt 27(14):2999–3002

    Article  Google Scholar 

Download references

Acknowledgments

This work was possible thanks to the MIT-Harvard Center of Cancer for Nanotechnology Excellence (CCNE), NIH grant: 5-U54-CA119349-04. The authors also want to thank Prof. Steve Brueck and Mr. Alex Laub for their support in the fabrication at the Center for High Technology Materials, University of New Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noel M. Elman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elman, N.M., Daniel, K., Jalali-Yazdi, F. et al. Super permeable nano-channel membranes defined with laser interferometric lithography. Microfluid Nanofluid 8, 557–563 (2010). https://doi.org/10.1007/s10404-009-0537-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-009-0537-z

Keywords

Navigation