Skip to main content

A review of the development of hybrid atomistic–continuum methods for dense fluids

Abstract

In recent years, there has been an increasing interest in simulating dynamical phenomena of multiscale systems. This was brought about in large part by the ever growing field of nanotechnology, in which nanodevices are often part of larger systems. Molecular Dynamics (MD) provides a valuable tool for modeling systems at the nanoscale. However, the atomistic modeling of macroscopic problems is still beyond the reach of current MD simulations due to their prohibitive computational requirements. The development of hybrid techniques that combine continuum and atomistic descriptions can alleviate such limitations. This can be accomplished by limiting the use of MD to regions where the atomistic scales need to be resolved, while using a continuum-based solver for the remainder of the domain. The computational savings of such a formulation will strongly depend on the relative size of the MD region to that of the continuum, and the extent of the overlap where information is exchanged between the two subdomains. Such methods are crucial for the proficient advancement and better understanding of nanodevices interacting with microscale systems. In this article, an account of the development of hybrid atomistic–continuum (HAC) models for dense flows is presented. The focus is on domain-decomposition-based HAC models. Here, the domain is divided into a relatively small region where atomistic details are important, and a larger region where the continuum description of the fluid is applicable. Of primary concern is how to accurately couple the atomistic and continuum domains, a challenge that manifests itself in the imposition of boundary conditions in an internally consistent manner. Two main approaches: state variable (Dirichlet), and flux-exchange schemes are analyzed and compared. A review of some applications utilizing such HAC models is also provided.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. In keeping with their original work, throughout the paper the atomistic–continuum interface will be referred to as HSI.

References

  • Allen M, Tildesley D (1987) Computer simulation of liquids. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Baldini G, Cannone F, Chirico G (2005) Pre-unfolding resonant oscillations of single green fluorescent protein molecules. Science 309(5737):1096–1100

    Article  Google Scholar 

  • Barrat J, Chiaruttini F (2003) Kapitza resistance at the liquid-solid interface. Mol Phys 101(11):1605–1610

    Article  Google Scholar 

  • Barsky S, Delgado-Buscalioni R, Coveney PV (2004) Comparison of molecular dynamics with hybrid continuum-molecular dynamics for a single tethered polymer in a solvent. J Chem Phys 121(5):2403–2411

    Article  Google Scholar 

  • Berendsen HJC, Postma JPM, Van Gunsteren WF, Dinola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690

    Article  Google Scholar 

  • Borgelt P, Hoheisel C, Stell G (1990) Exact molecular dynamics and kinetic theory results for thermal transport coefficients of the Lennard-Jones Argon fluid in a wide region of states. Phys Rev A 42(2):789–794

    Article  Google Scholar 

  • Brenner MP, Shi XD, Nagel SR (1994) Iterated instabilities during droplet fission. Phys Rev Lett 73(25):3391–3394

    Article  Google Scholar 

  • Broughton JQ, Meli CA, Vashishta P, Kalia RK (1997) Direct atomistic simulation of quartz crystal oscillators: bulk properties and nanoscale devices. Phys Rev B 56(2):611–618

    Article  Google Scholar 

  • Burt JM, Boyd ID (2009) A hybrid particle approach for continuum and rarefied flow simulation. J Comput Phys 228(2):460–475

    MATH  Article  Google Scholar 

  • Chatterji A, Horbach J (2005) Combining molecular dynamics with Lattice Boltzmann: a hybrid method for the simulation of (charged) colloidal systems. J Chem Phys 122(18):1–12

    Article  Google Scholar 

  • Cui J, He G, Qi D (2006) A constrained particle dynamics for continuum-particle hybrid method in micro- and nano-fluidics. Acta Mech Sin 26(6):503–508

    Article  Google Scholar 

  • De Fabritiis G, Delgado-Buscalioni R, Coveney PV (2004) Energy controlled insertion of polar molecules in dense fluids. J Chem Phys 121(24):12139–12142

    Article  Google Scholar 

  • De Fabritiis G, Delgado-Buscalioni R, Coveney PV (2006) Multiscale modeling of liquids with molecular specificity. Phys Rev Lett 97(13):134501

    Article  Google Scholar 

  • Delgado-Buscalioni R, Coveney PV (2003) Continuum-particle hybrid coupling for mass, momentum, and energy transfers in unsteady fluid flow. Phys Rev E 67(4):046704

    Article  Google Scholar 

  • Delgado-Buscalioni R, Coveney PV (2003) USHER: an algorithm for particle insertion in dense fluids. J Chem Phys 119(2):978–987

    Article  Google Scholar 

  • Delgado-Buscalioni R, Coveney PV (2004) Hybrid molecular-continuum fluid dynamics. Philos Trans R Soc Lond A 362(1821):1639–1654

    Article  MathSciNet  Google Scholar 

  • Delgado-Buscalioni R, De Fabritiis D (2007) Embedding molecular dynamics within fluctuating hydrodynamics in multiscale simulations of liquids. Phys Rev E 76(3):036709

    Article  Google Scholar 

  • Delgado-Buscalioni R, Flekkoy EG, Coveney PV (2005) Fluctuations and continuity in particle-continuum hybrid simulations of unsteady flows based on flux-exchange. Europhys Lett 69(6):959–965

    Article  Google Scholar 

  • Delgado-Buscalioni R, Coveney PV, De Fabritiis G (2008) Towards multi-scale modelling of complex liquids using hybrid particle-continuum schemes. Proc Inst Mech Eng C 222(5):769–776

    Article  Google Scholar 

  • Delgado-Buscalioni R, Kremer K, Praprotnik M (2008) Concurrent triple-scale simulation of molecular liquids. J Chem Phys 128(11):114110

    Article  Google Scholar 

  • Doyle PS, Ladoux B, Viovy JL (2000) Dynamics of a tethered polymer in shear flow. Phys Rev Lett 84(20):4769–4772

    Article  Google Scholar 

  • Dupuis A, Kotsalis EM, Koumoutsakos P (2007) Coupling Lattice Boltzmann and molecular dynamics models for dense fluids. Phys Rev E 75(4):046704

    Article  Google Scholar 

  • Espanol P, Revenga M (2003) Smoothed dissipative particle dynamics. Phys Rev E 67(2):026705

    Article  Google Scholar 

  • Evans DJ, Morriss GP (2007) Statistical mechanics of nonequilibrium liquids. ANU E Press, Australia

    Google Scholar 

  • Fedosov DA, Karniadakis GE (2009) Triple-Decker: interfacing atomistic-mesoscopic-continuum flow regimes. J Comput Phys 228(4):1157–1171

    MATH  Article  MathSciNet  Google Scholar 

  • Flekkoy EG, Wagner G, Feder J (2000) Hybrid model for combined particle and continuum dynamics. Europhys Lett 52(3):271–276

    Article  Google Scholar 

  • Flekkoy EG, Delgado-Buscalioni R, Coveney PV (2005) Flux boundary conditions in particle simulations. Phys Rev E 72(2):1–9

    Article  Google Scholar 

  • Frenkel D, Smith B (1996) Understanding molecular simulations. Academic Press, London

    Google Scholar 

  • Fyta M, Kaxiras E, Melchionna S, Succi S (2008) Multiscale simulation of nanobiological flows. Comput Sci Eng 10(4):10–19

    Article  Google Scholar 

  • Garcia AL, Bell JB, Crutchfield WY, Aldery BJ (1999) Adaptive mesh and algorithm refinement using direct simulation Monte Carlo. J Comput Phys 154:134–155

    MATH  Article  Google Scholar 

  • Grest GS, Kremer K (1986) Molecular dynamics simulation for polymers in the presence of a heat bath. Phys Rev A 33(5):3628–3631

    Article  Google Scholar 

  • Guo Z, Zheng C, Shi B (2002) Discrete lattice effects on the forcing term in the Lattice Boltzmann method. Phys Rev E 65(4):046308

    Article  MathSciNet  Google Scholar 

  • Hadjiconstantinou NG (1999) Hybrid atomistic-continuum formulations and the moving contact-line problem. J Comput Phys 154:245–265

    MATH  Article  Google Scholar 

  • Hadjiconstantinou NG (2005) Discussion of recent developments in hybrid atomistic-continuum methods for multiscale hydrodynamics. Bull Pol Acad Sci Tech Sci 53(4):335–342

    Google Scholar 

  • Hadjiconstantinou NG, Patera AT (1997) Heterogeneous atomistic-continuum representations for dense fluid systems. Int J Mod Phys 8(4):967–976

    Article  Google Scholar 

  • Hadjiconstantinou NG, Garcia AL, Bazant MZ, He G (2003) Statistical error in particle simulations of hydrodynamic phenomena. J Comput Phys 187(1):274–297

    MATH  Article  MathSciNet  Google Scholar 

  • Hansen JP, McDonald IR (1986) Theory of simple liquids. Academic Press, London

    Google Scholar 

  • Hash DB, Hassan HA (1995) A hybrid DSMC/Navier-Stokes solver. AIAA Paper 95-0414

  • Heyes DM (1988) Simple expressions for the self-diffusion coefficient, shear viscosity and thermal conductivity of Lennard-Jones fluids. Chem Phys Lett 153(4):319–321

    Article  Google Scholar 

  • Ho CM, Tai YC (1998) Micro-electro-mechanical-systems (MEMS) and fluid flows. Annu Rev Fluid Mech 30:579–612

    Article  Google Scholar 

  • Hoover WG, De Groot AJ, Hoover CG (1992) Massively parallel computer simulation of plane-strain elastic-plastic flow via nonequilibrium molecular dynamics and Lagrangian continuum mechanics. Comput Phys 6(2):155–167

    Article  Google Scholar 

  • Hu G, Li D (2007) Multiscale phenomena in microfluidics and nanofluidics. Chem Eng Sci 62(13):3443–3454

    Article  Google Scholar 

  • Johnson JK, Zollweg JA, Gubbins KE (1993) The Lennard-Jones equation of state revisited. Mol Phys 78(3):591–618

    Article  Google Scholar 

  • Kalweit M, Drikakis D (2008) Multiscale methods for micro/nano flows and materials. J Comput Theor Nanosci 5(9):1923–1938

    Article  Google Scholar 

  • Kalweit M, Drikakis D (2008) Coupling strategies for hybrid molecular-continuum simulation methods. Proc Inst Mech Eng C 222(5):797–806

    Google Scholar 

  • Karniadakis G, Beskok A, Aluru N (2005) Microflows and nanoflows, fundamentals and simulation. Springer, New York

    MATH  Google Scholar 

  • Kevrekidis IG, Gear CW, Hyman JM, Panagiotis GK, Runborg O, Theodoropoulos C (2003) Equation-free, coarse-grained multiscale computation: enabling microscopic simulators to perform system-level analysis. Commun Math Sci 1(4):715–762

    MATH  MathSciNet  Google Scholar 

  • Kevrekidis IG, Gear CW, Hummer G (2004) Equation-free: the computer-aided analysis of complex multiscale systems. AIChE J 50(7):1346–1355

    Article  Google Scholar 

  • Kohlhoff S, Gumbsch P, Fischmeister HF (1991) Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model. Philos Mag A 64(4):851–878

    Article  Google Scholar 

  • Koplik J, Banavar JR (1995) Continuum deductions from molecular hydrodynamics. Annu Rev Fluid Mech 27(1):257–292

    Article  Google Scholar 

  • Koplik J, Banavar JR (1995) Corner flow in the sliding plate problem. Phys Fluids 7(12):3118–3125

    MATH  Article  Google Scholar 

  • Kotsalis EM, Walther JH, Koumoutsakos P (2007) Control of density fluctuations in atomistic-continuum simulations of dense liquids. Phys Rev E 76(1):016709

    Article  Google Scholar 

  • Kotsalis EM, Walther JH, Kaxiras E, Koumoutsakos P (2009) Control algorithm for multiscale flow simulations of water. Phys Rev E 79(4):045701

    Article  Google Scholar 

  • Koumoutsakos P (2005) Multiscale flow simulations using particles. Annu Rev Fluid Mech 37:457–487

    Article  MathSciNet  Google Scholar 

  • Kunugi T, Muko K, Shibahara M (2004) Ultrahigh heat transfer enhancement using nano-porous layer. Superlattices Microstruct 35(3–6):531–542

    Article  Google Scholar 

  • Landau LD, Lifshitz EM (1959) Fluid mechanics. Pergamon Press, New York

    Google Scholar 

  • LeDuc P, Haber C, Bao G, Wirtz D (1999) Dynamics of individual flexible polymers in a shear flow. Nature 399(6736):564–566

    Article  Google Scholar 

  • Li J, Liao D, Yip S (1998) Coupling continuum to molecular-dynamics simulation: reflecting particle method and the field estimator. Phys Rev E 57(6):7259–7267

    Article  Google Scholar 

  • Li J, Liao D, Yip S (1999) Nearly exact solution for coupled continuum/MD fluid simulation. J Comput Aided Mater Des 6(2):95–102

    Article  Google Scholar 

  • Li J, Liao D, Yip S (1999) Imposing field boundary conditions in md simulation of fluids: optimal particle controller and buffer zone feedback. Mater Res Soc Symp Proc 538:473–478

    Google Scholar 

  • Lions PL (1988) On the Schwarz alternating method. In: Glowinski R (ed) First international symposium on domain decomposition methods for partial differential equations. SIAM, Philadelphia, USA, pp 1–42

    Google Scholar 

  • Liu J, Chen S, Nie X, Robbins MO (2007) A continuum-atomistic simulation of heat transfer in micro- and nano-flows. J Comput Phys 227(1):279–291

    MATH  Article  Google Scholar 

  • Liu J, Chen S, Nie X, Robbins MO (2008) A continuum-atomistic multi-timescale algorithm for micro/nano flows. Commun Comput Phys 4(5):1279–1291

    Google Scholar 

  • Macpherson GB, Reese JM (2008) Molecular dynamics in arbitrary geometries: parallel evaluation of pair forces. Mol Simul 34(1):97–115

    Article  Google Scholar 

  • Maday Y, Patera AT (1989) Spectral element methods for the incompressible Navier-Stokes equations. In: Noor AK, Oden JT (ed) State-of-the-art surveys in computational mechanics. ASME, New York, USA, pp 71–143

    Google Scholar 

  • McCormick SF (1989) Multilevel adaptive methods for partial differential equations. SIAM, Philadelphia

    MATH  Google Scholar 

  • Mukhopadhyay S, Abraham J (2009) A particle-based multiscale model for submicron fluid flows. Phys Fluids 21(2):027102

    Article  Google Scholar 

  • Nie XB, Chen SY, E WN, Robbins MO (2004) A continuum and molecular dynamics hybrid method for micro- and nano-fluid flow. J Fluid Mech 500:55–64

    MATH  Article  Google Scholar 

  • Nie X, Chen S, Robbins MO (2004) Hybrid continuum-atomistic simulation of singular corner flow. Phys Fluids 16(10):3579–3591

    Article  Google Scholar 

  • Nie X, Robbins MO, Chen S (2006) Resolving singular forces in cavity flow: multiscale modeling from atomic to millimeter scales. Phys Rev Lett 96(13):134501

    Article  Google Scholar 

  • O’Connell ST, Thompson PA (1995) Molecular dynamics-continuum hybrid computations: a tool for studying complex fluid flows. Phys Rev E 52(6):R5792–R5795

    Article  Google Scholar 

  • Patera AT (1984) A spectral element method for fluid dynamics—laminar flow in a channel expansion. J Comput Phys 54(3):468–488

    MATH  Article  MathSciNet  Google Scholar 

  • Pivkin IV, Karniadakis GE (2006) Controlling density fluctuations in wall-bounded dissipative particle dynamics systems. Phys Rev Lett 96(20):206001

    Article  Google Scholar 

  • Praprotnik K, Delle Site L, Kremer K (2005) Adaptive resolution molecular-dynamics simulation: changing the degrees of freedom on the fly. J Chem Phys 123(22):1–14

    Article  Google Scholar 

  • Praprotnik K, Delle Site L, Kremer K (2006) Adaptive resolution scheme for efficient hybrid atomistic-mesoscale molecular dynamics simulations of dense liquids. Phys Rev E 73(6):066701

    Article  Google Scholar 

  • Praprotnik M, Site LD, Kremer K (2008) Multiscale simulation of soft matter: from scale bridging to adaptive resolution. Annu Rev Phys Chem 59:545–571

    Article  Google Scholar 

  • Ren W (2007) Analytical and numerical study of coupled atomistic-continuum methods for fluids. J Comput Phys 227(2):1353–1371

    MATH  Article  MathSciNet  Google Scholar 

  • Ren W, Weinan E (2005) Heterogeneous multiscale method for the modeling of complex fluids and micro-fluidics. J Comput Phys 204(1):1–26

    MATH  Article  MathSciNet  Google Scholar 

  • Saletan EJ, Cromer AH (1971) Theoretical mechanics. Wiley, New York

  • Schmatko T, Hervet H, Leger L (2005) Friction and slip at simple fluid-solid interfaces: the roles of the molecular shape and the solid-liquid interaction. Phys Rev Lett 94(24):1–4

    Article  Google Scholar 

  • Schoch RB, Han J, Renaud P (2008) Transport phenomena in nanofluidics. Rev Mod Phys 80(3):839–883

    Article  Google Scholar 

  • Schubert K, Brandner J, Fichtner M, Linder G, Schygulla U, Wenka A (2001) Microstructure devices for applications in thermal and chemical process engineering. Microscale Thermophys Eng 5(1):17–39

    Article  Google Scholar 

  • Schwartzentruber TE, Scalabrin LC, Boyd ID (2007) A modular particle-continuum numerical method for hypersonic non-equilibrium gas flows. J Comput Phys 225(1):1159–1174

    MATH  Article  MathSciNet  Google Scholar 

  • Slater GW, Holm C, Chubynsky MV, de Haan HW, Dubé A, Grass K, Hickey OA, Kingsburry C, Sean D, Shendruk TN, Zhan L (2009) Modeling the separation of macromolecules: a review of current computer simulation methods. Electrophoresis 30(5):792–818

    Article  Google Scholar 

  • Stroock AD, Dertinger SKW, Ajdari A, Mezic I, Stone HA, Whitesides GM (2002) Chaotic mixer for microchannels. Science 295(5555):647–651

    Article  Google Scholar 

  • Succi S (2001) The Lattice Boltzmann equation, for fluid dynamics and beyond. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Succi S, Filippova O, Smith G, Kaxiras E (2001) Applying the Lattice Boltzmann equation to multiscale fluid problems. Comput Sci Eng 3(6):26–37

    Article  Google Scholar 

  • Sun Q, Boyd ID, Candler GV (2004) A hybrid continuum/particle approach for modeling subsonic, rarefied gas flows. J Comput Phys 194(1):256–277

    MATH  Article  Google Scholar 

  • Sun J, He Y, Tao W (2009) Molecular dynamics-continuum hybrid simulation for condensation of gas flow in a microchannel. Microfluid Nanofluid 7(3):407–422

    Google Scholar 

  • Thompson PA, Robbins MO (1989) Simulations of contact-line motion: slip and the dynamic contact angle. Phys Rev Lett 63(7):766–769

    Article  Google Scholar 

  • Thompson PA, Robbins MO (1990) Origin of stick-slip motion in boundary lubrication. Science 250(4982):792–794

    Article  Google Scholar 

  • Thompson PA, Brickerhoff WB, Robbins MO (1993) Microscopic studies of static and dynamic contact angles. J Adhes Sci Technol 7(6):535–554

    Article  Google Scholar 

  • Wadsworth DC, Erwin DA (1990) One-dimensional hybrid continuum/particle simulation approach for rarefied hypersonic flows. AIAA Paper 90-1690

  • Wagner G, Flekkoy EG (2004) Hybrid computations with flux exchange. Philos Trans R Soc Lond A 362(1821):1655–1665

    Article  MathSciNet  Google Scholar 

  • Wagner G, Flekkoy E, Feder J, Jossang T (2002) Coupling molecular dynamics and continuum dynamics. Comput Phys Commun 147(1–2):670–673

    MATH  Article  Google Scholar 

  • Wang Y, He G (2007) A dynamic coupling model for hybrid atomistic-continuum computations. Chem Eng Sci 62(13):3574–3579

    Article  MathSciNet  Google Scholar 

  • Weinan E, Engquist B, Li X, Ren W, Vanden-Eijnden E (2007) Heterogeneous multiscale methods: a review. Commun Comput Phys 2(3):367–450

    MATH  MathSciNet  Google Scholar 

  • Werder T, Walther JH, Koumoutsakos P (2005) Hybrid atomistic-continuum method for the simulation of dense fluid flows. J Comput Phys 205(1):373–390

    MATH  Article  MathSciNet  Google Scholar 

  • Wijesinghe HS, Hadjiconstantinou NG (2004) Discussion of hybrid atomistic-continuum methods for multiscale hydrodynamics. Int J Multiscale Comput Eng 2(2):189–202

    Article  Google Scholar 

  • Wolf-Gladrow DA (2005) Lattice-gas cellular automata and Lattice Boltzmann models—an introduction. Springer, New York

    Google Scholar 

  • Yasuda S, Yamamoto R (2008) A model for hybrid simulations of molecular dynamics and computational fluid dynamics. Phys Fluids 20(11):113101

    Article  Google Scholar 

  • Yen TH, Soong CY, Tzeng PY (2007) Hybrid molecular dynamics-continuum simulation for nano/mesoscale channel flows. Microfluid Nanofluid 3(6):665–675

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Mohamed.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mohamed, K.M., Mohamad, A.A. A review of the development of hybrid atomistic–continuum methods for dense fluids. Microfluid Nanofluid 8, 283–302 (2010). https://doi.org/10.1007/s10404-009-0529-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-009-0529-z

Keywords

  • Hybrid atomistic–continuum
  • Coupling
  • Molecular dynamics
  • Multiscale
  • Dense fluids
  • Microfluidics
  • Nanofluidics