Skip to main content
Log in

Realistic Brownian Dynamics simulations of biological molecule separation in nanofluidic devices

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We present a Brownian Dynamics model of biological molecule separation in periodic nanofilter arrays. The biological molecules are modeled using the Worm-Like-Chain model with Hydrodynamic Interactions. We focus on short dsDNA molecules; this places the separation process either in the Ogston sieving regime or the transition region between Ogston sieving and entropic trapping. Our simulation results are validated using the experimental results of Fu et al. (Phys Rev Lett 97:018103, 2006); particular attention is paid to the model’s ability to quantitatively capture experimental results using realistic values of all physical parameters. Our simulation results showed that molecule mobility is sensitive to the device geometry. Moreover, our model is used for validating the theoretical prediction of Li et al. (Anal Bioanal Chem 394:427–435, 2009) who proposed a separation process featuring an asymmetric device and an electric field of alternating polarity. Good agreement is found between our simulation results and the predictions of the theoretical model of Li et al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Allison SA (1986) Brownian Dynamics simulation of wormlike chains—fluorescence depolarization and depolarized light-scattering. Macromolecules 19(1):118–124

    Article  Google Scholar 

  • Duong-Hong D, Han J, Wang J, Hadjiconstantinou NG, Chen YZ, Liu G (2008) Realistic simulations of combined DNA electrophoretic flow and eof in nano-fluidic devices. Electrophoresis 29(24):4880–4886

    Article  Google Scholar 

  • Ermak DL, McCammon JA (1978) Brownian Dynamics with hydrodynamic interactions. J Chem Phys 69(4):1352–1360

    Article  Google Scholar 

  • Fu J, Mao P, Han J (2005) Nanofilter array chip for fast gel-free biomolecule separation. Appl Phys Lett 87(26):263902

    Article  Google Scholar 

  • Fu J, Yoo J, Han J (2006) Molecular sieving in periodic free-energy landscapes created by patterned nanofilter arrays. Phys Rev Lett 97(1):018103

    Article  Google Scholar 

  • Fu J, Schoch RB, Stevens AL, Tannenbaum SR, Han J (2007) A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins. Nat Nanotechnol 2:121–128

    Article  Google Scholar 

  • Giddings JC (1965) Dynamics of chromatography. Part 1. Principles and theory. Marcel Dekker, New York

    Google Scholar 

  • Grassia PS, Hinch EJ, Nitsche LC (1995) Computer-simulations of Brownian-Motion of complex-systems. J Fluid Mech 282:373–403

    Article  MATH  MathSciNet  Google Scholar 

  • Hagerman PJ, Zimm BH (1981) Monte carlo approach to the analysis of the rotational diffusion of wormlike chains. Biopolymers 20(7):1481–1502

    Article  Google Scholar 

  • Han J, Craighead HG (2002) Characterization and optimization of an entropic trap for DNA separation. Anal Chem 74(2):394–401

    Article  Google Scholar 

  • Hsieh C, Balducci A, Doyle PS (2008) Ionic effects on the equilibrium dynamics of DNA confined in nanoslits. Nano Lett 8(6):1683–1688

    Article  Google Scholar 

  • Kim SH, Panwar AS, Kumar S, Ahn KH, Lee SJ (2004) Electrophoresis of a bead–rod chain through a narrow slit: a Brownian Dynamics study. J Chem Phys 121(18):9116–9122

    Article  Google Scholar 

  • Klenin K, Merlitz H, Langowski J (1998) A Brownian Dynamics program for the simulation of linear and circular DNA and other wormlike chain polyelectrolytes. Biophys J 74(2):780–788

    Article  Google Scholar 

  • Kratky O, Porod G (1949) Röntgenuntersuchung gelöster fadenmoleküle. Recueil des Travaux Chimiques des Pays-Bas-Journal of the Royal Netherlands Chemical Society 68(12):1106–1122

    Google Scholar 

  • Laachi N, Declet C, Matson C, Dorfman KD (2007) Nonequilibrium transport of rigid macromolecules in periodically constricted geometries. Phys Rev Lett 98(9):098106

    Article  Google Scholar 

  • Lewis RJ, Allison SA, Eden D, Pecora R (1988) Brownian Dynamics simulations of a three-subunit and a ten-subunit worm-like chain: comparison of results with trumbell theory and with experimental results from DNA. J Chem Phys 89(4):2490–2503

    Article  Google Scholar 

  • Li ZR, Liu GR, Chen YZ, Wang J, Bow H, Cheng Y, Han J (2008) Continuum transport model of ogston sieving in patterned nanofilter arrays for separation of rod-like biomolecules. Electrophoresis 29(2):329–339

    Article  Google Scholar 

  • Li ZR, Liu GR, Han J, Chen YZ, Wang J, Hadjiconstantinou NG (2009) Transport of biomolecules in asymmetric nanofilter arrays. Anal Bioanal Chem 394(2):427–435

    Google Scholar 

  • Lu Y, Weers B, Stellwagen NC (2002) DNA persistence length revisited. Biopolymers 61(4):261–275

    Article  Google Scholar 

  • Lukacs GL, Haggie P, Seksek O, Lechardeur D, Freedman N, Verkman AS (2000) Size-dependent DNA mobility in cytoplasm and nucleus. J Biol Chem 275(3):1625–1629

    Article  Google Scholar 

  • Marko JF, Siggia ED (1995) Stretching DNA. Macromolecules 28(26):8759–8770

    Article  Google Scholar 

  • Nkodo AE, Garnier JM, Tinland B, Ren H, Desruisseaux C, McCormick LC, Drouin G, Slater GW (2001) Diffusion coefficient of DNA molecules during free solution electrophoresis. Electophoresis 22(12):2424–2432

    Article  Google Scholar 

  • Öttinger HC (1996) Stochastic processes in polymeric fluids: tools and examples for developing simulation algorithms. Springer, Berlin, New York

    MATH  Google Scholar 

  • Panwar AS, Kumar S (2006) Time scales in polymer electrophoresis through narrow constrictions: a Brownian Dynamics study. Macromolecules 39(3):1279–1289

    Article  Google Scholar 

  • Pathria RK (1996) Statistical mechanics, 2nd edn. Butterworth-Heinemann, Boston

  • Rotne J, Prager S (1969) Variational treatment of hydrodynamic interaction in polymers. J Chem Phys 50(11):4831–4837

    Article  Google Scholar 

  • Scopes RK (1994) Protein purification: principles and practice. Springer, New York

    Google Scholar 

  • Smejkal GB, Lazarev A (eds) (2006) Separation methods in proteomics. CRC Taylor & Francis, Boca Raton, FL

    Google Scholar 

  • Smith SB, Bendich AJ (1990) Electrophoretic charge density and persistence length of DNA as measured by fluorescence microscopy. Biopolymers 29(8–9):1167–1173

    Article  Google Scholar 

  • Somasi M, Khomami B, Woo NJ, Hur JS, Shaqfeh ESG (2055) Brownian Dynamics simulations of bead–rod and bead–spring chains: numerical algorithms and coarse-graining issues. J Non-Newton Fluid Mech 108(1–3):227–255

    Google Scholar 

  • Stellwagen NC, Gelfi C, Righetti PG (1997) The free solution mobility of DNA. Biopolymers 42(6):687–703

    Article  Google Scholar 

  • Streek M, Schmid F, Duong TT, Ros A (2004) Mechanisms of DNA separation in entropic trap arrays: a Brownian Dynamics simulation. J Biotechnol 112(1–2):79–89

    Article  Google Scholar 

  • Tao Y, Den Otter WK, Padding JT, Dhont JKG, Briels WJ (2005) Brownian Dynamics simulations of the self- and collective rotational diffusion coefficients of rigid long thin rods. J Chem Phys 122(24):244903

    Article  Google Scholar 

  • Viovy J (2000) Electrophoresis of DNA and other polyelectrolytes: physical mechanisms. Rev Mod Phys 72(3):813–872

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Professor J. Han and his group (Dr. Jianping Fu in particular), for making their experimental data available and for useful discussions. This study was supported by the Singapore-MIT alliance (SMA-II, CE program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas G. Hadjiconstantinou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fayad, G.N., Hadjiconstantinou, N.G. Realistic Brownian Dynamics simulations of biological molecule separation in nanofluidic devices. Microfluid Nanofluid 8, 521–529 (2010). https://doi.org/10.1007/s10404-009-0483-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-009-0483-9

Keywords

Navigation