Particle concentration via acoustically driven microcentrifugation: microPIV flow visualization and numerical modelling studies

Abstract

Through confocal-like microparticle image velocimetry experiments, we reconstruct, for the first time, the three-dimensional flow field structure of the azimuthal fluid recirculation in a sessile drop induced by asymmetric surface acoustic wave radiation, which, in previous two-dimensional planar studies, has been shown to be a powerful mechanism for driving inertial microcentrifugation for micromixing and particle concentration. Supported through finite element simulations, these insights into the three-dimensional flow field provide valuable information on the mechanisms by which particles suspended in the flow collect in a stack at a central position on the substrate at the bottom of the drop once they are convected by the fluid to the bottom region via a helical spiral-like trajectory around the drop periphery. Once close to the substrate, the inward radial velocity then forces the particles into this central stagnation point where they are trapped by sedimentary forces, provided the convective force is insufficient to redisperse them along with the fluid up a central column and into the bulk of the drop.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Alvarez M, Friend JR, Yeo LY (2008a) Rapid generation of protein aerosols and nanoparticles via surface acoustic wave atomization. Nanotechnology 19:455103

    Article  Google Scholar 

  2. Alvarez M, Friend JR, Yeo LY (2008b) Surface vibration induced spatial ordering of periodic polymer patterns on a substrate. Langmuir 24:10629–10632

    Article  Google Scholar 

  3. Alvarez M, Yeo LY, Friend JR (2009) Rapid production of protein loaded biodegradable microparticles using surface acoustic waves. Biomicrofluidics 3:014102

    Article  Google Scholar 

  4. ANSYS CFX-Solver Theory Guide (2006) ANSYS, Inc., p 294

  5. Arifin DR, Yeo LY, Friend JR (2007) Microfludic blood plasma separation via bulk electrohydrodynamic flows. Biomicrofluidics 1:014103

    Article  Google Scholar 

  6. Batchelor GK (1951) Note on a class of solution of the navier-stokes equations representing steady rotationally symmetric flow. Q J Mech Appl Math 4:29–41

    MATH  Article  MathSciNet  Google Scholar 

  7. Benton ER, Clark A (1974) Spin up. Annu Rev Fluid Mech 6:257–280

    Article  Google Scholar 

  8. Blattert C, Jurisekha R, Tahhan I, Schoth A, Kerth P, Menz K (2004) Separation of blood in microchannel bends. In: Proceedings of the 26th annual international conference of the IEEE. Engineering in Medicine and Biology Society, San Francisco

  9. Brody JP, Osborn TD, Forster FK, Yager P (1996) A planar microfabricated fluid filter. Sens Act A 54:704–708

    Article  Google Scholar 

  10. Ducree J (2008) Centrifugal microfluidics. In: Li D (ed) Encyclopedia of microfluidics and nanofluidics. Springer, New York

  11. Friend J, Yeo L, Arifin D, Mechler A (2008) Evaporative self-assembly assisted synthesis of polymer nanoparticles by surface acoustic wave atomization. Nanotechnology 19:145301

    Article  Google Scholar 

  12. Hodgson RP, Tan M, Yeo L, Friend J (2009) Transmitting high power rf acoustic radiation via fluid couplants into superstrates for microfluidics. Appl Phys Lett 94(2):024102

    Article  Google Scholar 

  13. King L (1934) On the acoustic radiation pressure on spheres. Proc R Soc Lond A 147:212–240

    Article  Google Scholar 

  14. Li H, Friend JR, Yeo LY (2007) Surface acoustic wave concentration of particle and bioparticle suspensions. Biomed Microdev 9:647–656

    Article  Google Scholar 

  15. Li H, Friend JR, Yeo LY (2008) Microfluidic colloidal island formation and erasure induced by surface acoustic wave radiation. Phys Rev Lett 101:084502

    Article  Google Scholar 

  16. Loh B-G, Hyun S, Ro PI, Kleinstreuer C (2002) Acoustic streaming induced by ultrasonic flexural vibrations and associated enhancement of convective heat transfer. J Acoust Soc Am 111:875–883

    Article  Google Scholar 

  17. Madou M, Kellogg G (1998) LabCD: a centrifuge-based platform for diagnostics. In: Proceedings of the SPIE, vol 3259, pp 80–93

  18. Meng AH, Wang AW, White RM (1999) Ultrasonic sample concentration for microfluidic systems. In: Proceedings of the tenth international conference on solid-state sensors and actuators, pp 876–879

  19. Nyborg WL (1965) Physical acoustics, vol 2B. Academic Press, New York

    Google Scholar 

  20. Pao H-P (1972) Numerical solution of the navier-stokes equations for flows in the disk-cylinder system. Phys Fluids 15:4

    MATH  Article  Google Scholar 

  21. Papautsky I, Asgar A, Bhagat S (2008) Microscale flow visualization. In: Li D (ed) Encyclopedia of microfluidics and nanofluidics. Springer, New York

  22. Pommer MS, Kielhl AR, Soni G, Dakessian NS, Meinhart CD (2007) A 3d–3c micro-piv method. In: Proceedings of the second IEEE international conference on nano/micro engineered and molecular systems, p 074103

  23. Qi A, Yeo LY, Friend JR (2008) Interfacial destabilization and atomization driven by surface acoustic waves. Phys Fluids 20:074103

    Article  Google Scholar 

  24. Rife J, Bell M, Horwitz J, Kabler M, Auyeung R, Kim W (2000) Miniature valveless ultrasonic pumps and mixers. Sens Actuators 86:135–140

    Article  Google Scholar 

  25. Sankaranarayanan SKRS, Cular S, Bhethanabotla VR, Joseph B (2008) Flow induced by acoustic streaming on surface-acoustic-wave devices and its application in biofouling removal: a computational study and comparisons to experiment. Phys Rev E 77:066308

    Article  Google Scholar 

  26. Sengupta S, Chang H-C (2008) Microfilters. In:Li D (ed) Encyclopedia of microfluidics and nanofluidics. Springer, New York

  27. Shilton R, Tan MK, Yeo LY, Friend JR (2008) Particle concentration and mixing in microdrops driven by focused surface acoustic waves. J Appl Phys 104:014910

    Article  Google Scholar 

  28. Tan MK, Friend JR, Yeo LY (2007a) Direct visualization of surface acoustic waves along substrates using smoke particles. Appl Phys Lett 91:224101

    Article  Google Scholar 

  29. Tan MK, Yeo LY, Friend JR (2007b) Microparticle collection and concentration via a miniature surface acoustic wave device. Lab Chip 7:618–625

    Article  Google Scholar 

  30. Tan MK, Friend JR, Yeo LY (2009) Anomalous interfacial jetting phenomena induced by focused surface vibrations. Phys Rev Lett (submitted)

  31. Walker GM, Beebe DJ (2002) A passive pumping method for microfluidic devices. Lab Chip 2:131–134

    Article  Google Scholar 

  32. White R, Voltmer F (1965) Direct piezoelectric coupling to surface elastic waves. Appl Phys Lett 7:314–316

    Article  Google Scholar 

  33. Whitesides G (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  Google Scholar 

  34. Wilding P, Pfahler J, Bau HH, Zemel JN, Kricka LJ (1994) Manipulation and flow of biological fluids in straight channels micromachined in silicon. Clin Chem 40:43–47

    Google Scholar 

  35. Wixforth A (2003) Acoustically driven planar microfluidics. Superlattice Microst 33:389–396

    Article  Google Scholar 

  36. Wixforth A, Strobl C, Gauer C, Toegl A, Scriba J, Guttenberg Z (1990) Acoustic manipulation of small droplets. Anal Bioanal Chem 319:982–991

    Google Scholar 

  37. Yeo LY, Friend JR (2009) Ultrafast microfluidics using surface acoustic waves. Biomicrofluidics 3:012002

    Article  Google Scholar 

  38. Yeo LY, Friend JR, Arifin DR (2006a) Electric tempest in a teacup: the tea leaf analogy to microfluidic blood plasma separation. Appl Phys Lett 89:103516

    Article  Google Scholar 

  39. Yeo LY, Hou D, Maheshswari S, Chang H-C (2006b) Electrohydrodynamic surface micro-vortices for mixing and particle trapping. Appl Phys Lett 88:233512

    Article  Google Scholar 

  40. Yosioka K, Kawashima Y (1955) Acoustic radiation pressure on a compressible sphere. Acustica 5:167–173

    Google Scholar 

  41. Yuen PK, Kricka LJ, Fortina P, Panaro NL, Sakazume T, Wilding P (2001) Micro-fluidics module for blood sample preparation and nucleic acid amplification reaction. Genome Res 11:405

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Leslie Y. Yeo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Raghavan, R.V., Friend, J.R. & Yeo, L.Y. Particle concentration via acoustically driven microcentrifugation: microPIV flow visualization and numerical modelling studies. Microfluid Nanofluid 8, 73 (2010). https://doi.org/10.1007/s10404-009-0452-3

Download citation

Keywords

  • Surface acoustic waves
  • Particle concentration
  • Microfluidics
  • Microcentrifugation
  • Microparticle image velocimetry