Skip to main content
Log in

Analysis of capillary filling in nanochannels with electroviscous effects

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Capillary filling is the key phenomenon in planar chromatography techniques such as paper chromatography and thin layer chromatography. Recent advances in micro/nanotechnologies allow the fabrication of nanoscale structures that can replace the traditional stationary phases such as paper, silica gel, alumina, or cellulose. Thus, understanding capillary filling in a nanochannel helps to advance the development of planar chromatography based on fabricated nanochannels. This paper reports an analysis of the capillary filling process in a nanochannel with consideration of electroviscous effect. In larger scale channels, where the thickness of electrical double layer (EDL) is much smaller than the characteristic length, the formation of the EDL plays an insignificant role in fluid flow. However, in nanochannels, where the EDL thickness is comparable to the characteristic length, its formation contributes to the increase in apparent viscosity of the flow. The results show that the filling process follows the Washburn’s equation, where the filled column is proportional to the square root of time, but with a higher apparent viscosity. It is shown that the electroviscous effect is most significant if the ratio between the channel height (h) and the Debye length (κ −1) reaches an optimum value (i.e. κh ≈ 4). The apparent viscosity is higher with higher zeta potential and lower ion mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A c :

Cross-section of the channel

A, B, C, D, E :

Reduced variables

e :

Elementary charge, 1.305 × 10−19C

E s :

Streaming electric field strength

F e :

Electrical force

F s :

Surface force

F v :

Viscous drag force

h :

Channel’s height

I c :

Conduction current

I s :

Streaming current

k :

Boltzmann’s constant, 1.381 × 10−23 JK−1

n :

Local concentration

n 0 :

Bulk concentration

q a :

Accumulated charge

T :

Room temperature

t :

Time variable

u :

Fluid velocity

U s :

Streaming potential

w :

Channel’s width

x :

Capillary filling length

y :

Coordinate across the channel height

z :

Charge number

EDL:

Electric double layer

IC:

Initial condition

ODE:

Ordinary differential equation

_ :

Average value across the height

^:

Divide by channel width w

i :

Belong to ion species i

α, β, γ :

Functions in phase space

ε :

Relative permittivity of the fluid

ε 0 :

Permittivity of free space 8.854 × 10−12 CV−1 m−1

ζ :

Zeta potential

θ :

Contact angle

η :

Material dimensionless parameter

κ :

Inverse of Debye thickness

λ :

Conductivity of the fluid/eigenvalue in Appendix 1

Λm :

Molar conductivity of solution

μ :

Dynamic viscosity

μ a :

Apparent dynamic viscosity

Δμ :

Increase in dynamic viscosity

υ :

Ion mobility

ξ :

Auxiliary variable

ρ m :

Mass density of the fluid

ρ q :

Charge density

σ :

Surface tension

χ :

Auxiliary variable

Ψ:

Electrostatic potential across the channel’s height

\( \tilde{\Uppsi } \) :

Normalized electrostatic potential \( \tilde{\Uppsi } = \frac{e\Uppsi }{kT} \)

References

  • Bowen WR, Jenner F (1995) Dynamic ultrafiltration model for charged colloidal dispersions: a Wigner-Seitz cell approach. Chem Eng Sci 50:1707–1736

    Article  Google Scholar 

  • Burgreen D, Nakache FR (1964) Electrokinetic flow in ultrafine capillary slits. J Phys Chem 68:1084–1091

    Article  Google Scholar 

  • Chakraborty S (2005) Dynamics of capillary flow of blood into a microfluidic channel. Lab Chip Miniat Chem Biol 5:421–430

    Article  Google Scholar 

  • Chakraborty S (2007) Electroosmotically driven capillary transport of typical non-Newtonian biofluids in rectangular microchannels. Anal Chim Acta 605:175–184

    Article  Google Scholar 

  • Chakraborty S (2008a) Generalization of interfacial electrohydrodynamics in the presence of hydrophobic interactions in narrow fluidic confinements. Phys Rev Lett 100

  • Chakraborty S (2008b) Order parameter description of electrochemical-hydrodynamic interactions in nanochannels. Phys Rev Lett 101

  • Chakraborty D, Chakraborty S (2008) Interfacial phenomena and dynamic contact angle modulation in microcapillary flows subjected to electroosmotic actuation. Langmuir 24:9449–9459

    Article  Google Scholar 

  • Chakraborty S, Das S (2008) Streaming-field-induced convective transport and its influence on the electroviscous effects in narrow fluidic confinement beyond the Debye-Hu?ckel limit. Phys Rev E Stat Nonlinear Soft Matter Phys 77

  • Chakraborty S, Mittal R (2007) Droplet dynamics in a microchannel subjected to electrocapillary actuation. J Appl Phys, 101

  • Conlisk AT (2005) The Debye-Hu?ckel approximation: its use in describing electroosmotic flow in micro- and nanochannels. Electrophoresis 26:1896–1912

    Article  Google Scholar 

  • Debye P, Hückel E (1923) The theory of electrolytes. I: lowering of freezing point and related phenomena. Physikalische Zeitschrift 185–206

  • Eijkel JCT, van den Berg A (2005) Nanofluidics: what is it and what can we expect from it? Microfluid Nanofluid 1:249–267

    Article  Google Scholar 

  • Han A, Mondin G, Hegelbach NG, de Rooij NF, Staufer U (2006) Filling kinetics of liquids in nanochannels as narrow as 27 nm by capillary force. J Colloid Interface Sci 293:151–157

    Article  Google Scholar 

  • Hsu JP, Kao CY, Tseng S, Chen CJ (2002) Electrokinetic flow through an elliptical microchannel: effects of aspect ratio and electrical boundary conditions. J Colloid Interface Sci 248:176–184

    Article  Google Scholar 

  • Huang KD, Yang RJ (2007) Electrokinetic behaviour of overlapped electric double layers in nanofluidic channels. Nanotechnology 18

  • Huang KD, Yang RJ (2008) Formation of ionic depletion/enrichment zones in a hybrid micro-/nano-channel. Microfluid Nanofluid 1–8

  • Huang W, Bhullar RS, Yuan Cheng F (2001) The surface-tension-driven flow of blood from a droplet into a capillary tube. J Biomech Eng 123:446–454

    Article  Google Scholar 

  • Huang W, Liu Q, Li Y (2006) Capillary filling flows inside patterned-surface microchannels. Chem Eng Technol 29:716–723

    Article  MathSciNet  Google Scholar 

  • Hunter RJ (1981) Zeta potential in colloid science: principles and applications. Academic Press

  • Jeong HE, Kim P, Kwak MK, Seo CH, Suh KY (2007) Capillary kinetics of water in homogeneous, hydrophilic polymeric micro- to nanochannels. Small 3:778–782

    Article  Google Scholar 

  • Kundu PK, Cohen IM (1990) Fluid mechanics. Academic Press

  • Lerch MA, Jacobson SC (2007) Electrokinetic fluid control in two-dimensional planar microfluidic devices. Anal Chem 79:7485–7491

    Article  Google Scholar 

  • Levine S, Neale GH (1974) The prediction of electrokinetic phenomena within multiparticle systems. I: electrophoresis and electroosmosis. J Colloid Interface Sci 47:520–529

    Article  Google Scholar 

  • Levine S, Marriott JR, Neale G, Epstein N (1975a) Theory of electrokinetic flow in fine cylindrical capillaries at high zeta-potentials. J Colloid Interface Sci 52:136–149

    Article  Google Scholar 

  • Levine S, Marriott JR, Robinson K (1975b) Theory of electrokinetic flow in a narrow parallel-plate channel. J Chem Soc Faraday Trans 2 Mol Chem Phys 71:1–11

    Google Scholar 

  • Lyklema J, van Leeuwen HP, Vliet M, Cazabat A-M (2005) Fundamentals of interface and colloid science. Academic Press

  • Mijatovic D, Eijkel JCT, van den Berg A (2005) Technologies for nanofluidic systems: Top-down vs. bottom-up—a review. Lab Chip Miniat Chem Biol 5:492–500

    Article  Google Scholar 

  • Mohiuddin Mala G, LI D (1999) Flow characteristics of water in microtubes. Int J Heat Fluid Flow 20:142–148

    Article  Google Scholar 

  • Mortensen NA, Kristensen A (2008) Electroviscous effects in capillary filling of nanochannels. Appl Phys Lett 92

  • Mortensen NA, Diesen LH, Bruus H (2006) Transport coefficients for electrolytes in arbitrarily shaped nano- and microfluidic channels. New J Phys 8

  • Mortensen NA, Olesen LH, Okkels F, Bruus H (2007) Mass and charge transport in micro and nanofluidic channels. Nanoscale Microscale Thermophys Eng 11:57–69

    Article  Google Scholar 

  • Nguyen N-T (2008) Micromixers fundamentals, design and fabrication. William Andrew

  • Perry JL, Kandlikar SG (2006) Review of fabrication of nanochannels for single phase liquid flow. Microfluid Nanofluid 2:185–193

    Article  Google Scholar 

  • Persson F, Thamdrup LH, Mikkelsen MBL, Jaarlgard SE, Skafte-Pedersen P, Bruus H, Kristensen A (2007) Double thermal oxidation scheme for the fabrication of SiO2 nanochannels. Nanotechnology 18:246301

    Article  Google Scholar 

  • Petsev DN (2008) Transport in fluidic nanochannels. Colloidal Background, Nanoscience

  • Philip JR, Wooding RA (1970) Solution of the poisson-Boltzmann equation about a cylindrical particle. J Chem Phys 52:953–959

    Article  MathSciNet  Google Scholar 

  • Ren CL, Li D (2005) Improved understanding of the effect of electrical double layer on pressure-driven flow in microchannels. Anal Chim Acta 531:15–23

    Article  Google Scholar 

  • Reuss FF (1809) Sur un nouvel effet de l’electricite galvanique. Memoires de la Societe Imperiale de Naturalistes de Moscou

  • Rice, Whitehead (1965) Electrokinetic flow in a narrow cylindrical capillary. J Phys Chem 69:4017–4023

    Google Scholar 

  • Russel WB, Saville DA, Schowalter WR (1989) Colloidal dispersions, Cambridge University Press

  • Sherma J (2002) Planar chromatography. Anal Chem 74:2653–2662

    Article  Google Scholar 

  • Sherma J (2004) Planar chromatography. Anal Chem 76:3251–3262

    Article  Google Scholar 

  • Sherma J (2006) Planar chromatography. Anal Chem 78:3841–3852

    Article  Google Scholar 

  • Sherma J (2008) Planar chromatography. Anal Chem 80:4253–4267

    Article  Google Scholar 

  • Smoluchowski (1903) Contribution a la theorie de l’endosmose electrique et de quelques phenomenes correlatifs. Bulletin International de l’Academie des Sciences de Cracovie 182–200

  • Tas NR, Mela P, Kramer T, Berenschot JW, van den Berg A (2003) Capillarity induced negative pressure of water plugs in nanochannels. Nano Lett 3:1537–1540

    Article  Google Scholar 

  • Tas NR, Haneveld J, Jansen HV, Elwenspoek M, van den Berg A (2004) Capillary filling speed of water in nanochannels. Appl Phys Lett 85:3274–3276

    Article  Google Scholar 

  • Tas NR, Haneveld J, Jansen HV, Elwenspoek M, Brunets N (2008) Capillary filling of sub-10 nm nanochannels. J Appl Phys 104:014309

    Article  Google Scholar 

  • Thamdrup LH, Persson F, Bruus H, Kristensen A, Flyvbjerg H (2007) Experimental investigation of bubble formation during capillary filling of SiO2 nanoslits. Appl Phys Lett 91

  • van Delft KM, Eijkel JCT, Mijatovic D, Druzhinina TS, Rathgen H, Tas NR, van den Berg A, Mugele F (2007) Micromachined fabry-perot interferometer with embedded nanochannels for nanoscale fluid dynamics. Nano Lett 7:345–350

    Article  Google Scholar 

  • van Honschoten JW, Escalante M, Tas NR, Jansen HV, Elwenspoek M (2007) Elastocapillary filling of deformable nanochannels. J Appl Phys 101

  • Verwey EJW, Overbeek JTG (1948) Theory and stability of lyophobic colloids. Elsevier, Amsterdam

    Google Scholar 

  • Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17:273

    Article  Google Scholar 

  • Yang C, LI D (1997) Electrokinetic effects on pressure-driven liquid flows in rectangular microchannels. J Colloid Interface Sci 194:95–107

    Article  Google Scholar 

  • Yang J, Lu F, Kwok DY (2004) Dynamic interfacial effect of electroosmotic slip flow with a moving capillary front in hydrophobic circular microchannels. J Chem Phys 121:7443–7448

    Article  Google Scholar 

  • Yuan Z, Garcia AL, Lopez GP, Petsev DN (2007) Electrokinetic transport and separations in fluidic nanochannels. Electrophoresis 28:595–610

    Article  Google Scholar 

  • Zimmermann M, Schmid H, Hunziker P, Delamarche E (2007) Capillary pumps for autonomous capillary systems. Lab Chip Miniat Chem Biol 7:119–125

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-Trung Nguyen.

Appendix 1

Appendix 1

To analyze the stability of the critical point found in Eq. (30), it is necessary to rewrite equation Eq. (29) as below

$$ \left\{ {\begin{array}{*{20}l} {\dot{\chi } = \alpha (\chi ,\xi ,\bar{u}) = \frac{{\hat{F}_{\text{s}} }}{C} - \frac{A}{C}\chi - \frac{B}{C}\xi } \\ {\dot{\xi } = \beta (\chi ,\xi ,\bar{u}) = - D\xi + E\chi + \frac{\xi }{\chi }\bar{u}^{2} } \\ {\dot{\bar{u}} = \gamma (\chi ,\xi ,\bar{u}) = \left( {\frac{{\hat{F}_{\text{s}} }}{C} - \frac{A}{C}\chi - \frac{B}{C}\xi } \right)\frac{{\bar{u}}}{\chi } - \frac{{\bar{u}^{3} }}{\chi }} \\ \end{array} } \right. $$
(38)

These non-linear equations cannot be linearized because γ x , γ ξ , \( \gamma_{{\bar{u}}} \) reduce to 0 when \( \bar{u} = 0. \)

However, the stability still can be discovered by considering some experimental facts. First, the capillary filling length x increases with time. Therefore, \( \bar{u} = \dot{x} \) is a non-negative function. Second, the viscous force is proportional to \( \bar{u}x. \) Because the surface tension, as the capillary filling driving force, is a constant, the viscous force must be bound. Therefore, the average velocity \( \bar{u} \) must approach 0 when t → . So, the problem reduces to determining the stability of the critical point in \( \bar{u} = 0 \) hyperplane. With this condition, the Eq. (38) can be rewritten as.

$$ \left\{ {\begin{array}{*{20}l} {\alpha (\chi ,\xi ,0) = \frac{{\hat{F}_{\text{s}} }}{C} - \frac{A}{C}\chi - \frac{B}{C}\xi } \\ {\beta (\chi ,\xi ,0) = - D\xi + E\chi } \\ \end{array} } \right. $$
(39)

To linearize this equation in \( \bar{u} = 0 \) hyperplane, at the critical point, the Jacobian matrix J is evaluated at that point.

$$ J = \left[ {\begin{array}{*{20}c} {\alpha_{\chi } } & {\alpha_{\xi } } \\ {\beta_{\chi } } & {\beta_{\xi } } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} { - \frac{A}{C}} & { - \frac{B}{C}} \\ E & { - D} \\ \end{array} } \right] $$
(40)

The eigenvalues λ are calculated by

$$ \left| {\begin{array}{*{20}c} { - \frac{A}{C} - \lambda } & { - \frac{B}{C}} \\ E & { - D - \lambda } \\ \end{array} } \right| = \left( { - \frac{A}{C} - \lambda } \right)( - D - \lambda ) + \frac{\text{BE}}{C} = 0 $$
(41)

Expand the variable

$$ \lambda^{2} + \left( {\frac{A}{C} + D} \right)\lambda + \frac{{{\text{AD}} + {\text{BE}}}}{C} = 0 $$
(42)

Discriminant Δ

$$ \begin{aligned} \Updelta & = \left( {\frac{A}{C} + D} \right)^{2} - 4\frac{{{\text{AD}} + {\text{BE}}}}{C} \\ & = \frac{{A^{2} }}{{C^{2} }} - 2\frac{\text{AD}}{C} + D^{2} - \frac{{4{\text{BE}}}}{C} \\ & = \left( {\frac{A}{C} - D} \right)^{2} - \frac{{4{\text{BE}}}}{C} \\ \end{aligned} $$
(43)

It is necessary to know the sign of the reduced variables. By their definition, the variables A, C and D are positive. Both variables B and E are opposite in sign to ζ; therefore, the product BE is positive.

As a result, if Δ ≥ 0, two eigenvalues are

$$ \lambda_{1} = \frac{1}{2}\left( { - \frac{A}{C} - D - \sqrt \Updelta } \right) $$
(44)
$$ \lambda_{1} = \frac{1}{2}\left( { - \frac{A}{C} - D + \sqrt \Updelta } \right) $$
(45)

With A, C and D are positive, λ 1 is negative obviously. In quadratic equation (42)

$$ \lambda_{1} \lambda_{2} = 4\frac{{{\text{AD}} + {\text{BE}}}}{C} > 0 $$
(46)

Then, λ 2 is also negative. The critical point is a nodal sink (stable).

If Δ < 0, two eigenvalues are complex numbers, with the real parts are

$$ {\text{Re(}}\lambda_{1} )= {\text{Re}}(\lambda_{2} ) = \frac{ - A - D}{2C} < 0 $$
(47)

The critical point is a spiral sink (stable).

Because there is only one finite critical point, and three variables χ, ξ, and \( \bar{u} \)are bound as → , the critical point as in Eq. (30) describes the asymptotic solution of the system.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phan, VN., Yang, C. & Nguyen, NT. Analysis of capillary filling in nanochannels with electroviscous effects. Microfluid Nanofluid 7, 519 (2009). https://doi.org/10.1007/s10404-009-0410-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-009-0410-0

Keywords

Navigation