Skip to main content
Log in

Photo-definable microchannels made with spin-on polymers and short sacrificial etch times

  • Short Communication
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Hollow tubular microfluidic channels were fabricated from two spin-on, photodefinable polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allen R, Foster M, Yen Y (1982) Deep U.V. hardening of positive photoresist patterns. J Electrochem Soc 129:1379–1381

    Article  Google Scholar 

  • Barber J, Lunt E, George Z, Yin D, Schmidt H, Hawkins A (2006) Integrated hollow waveguides with arch-shaped cores. IEEE Photonics Technol Lett 18:28–30

    Article  Google Scholar 

  • Campbell KJ, Morine JC, George ZA, Schultz SM, Hawkins AR, Lusk CP, Howell LL (2005) Polymer stretching to produce flat suspended micromembranes. J Microlithogr Microfabr Microsyst 4:043005. doi:10.1117/1.2075267

  • Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984

    Article  Google Scholar 

  • Effenhauser CS, Bruin GJM, Paulus A, Ehrat M (1997) Integrated capillary electrophoresis on molecules on microchips. Anal Chem 69:3451–3457

    Article  Google Scholar 

  • Harrison DJ, Fluri K, Seiler K, Fan Z, Effenhauser CS, Manz A (1993) Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science 261:895–897

    Article  Google Scholar 

  • Henry AC, Tutt TJ, Galloway M, Davidson YY, McWhorter CS, Soper SA, McCarley RL (2000) Surface modification of poly(methyl methacrylate) used in the fabrication of microanalytical devices. Anal Chem 72:5331–5337

    Article  Google Scholar 

  • Jacobsen SC, Hergenröder R, Koutny LB, Ramsey JM (1994) High-speed separations on a microchip. Anal Chem 66:1114–1118

    Article  Google Scholar 

  • Kelly RT, Pan T, Woolley AT (2005) Phase-changing sacrificial materials for solvent bonding of high-performance polymeric capillary electrophoresis microchips. Anal Chem 77:3536–3541

    Article  Google Scholar 

  • Lee KB, Lin L (2004) Surface micromachined glass and polysilicon microchannels using MUMPs for BioMEMS applications. Sens Actuators A 111:44–50

    Article  Google Scholar 

  • Lee J, Park C, Whitesides G (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic device. Anal Chem 75:6544–6554

    Article  Google Scholar 

  • Lee J, Barber J, George Z, Lee M, Schmidt H, Hawkins A (2007) Microchannels with rectangular and arched core shapes fabricated using sacrificial etching. J Micro/Nanolith MEMS MOEMS 6:013010. doi:10.1117/1.2434990

  • Liu YJ, Ganser D, Schneider A, Liu R, Grodzinski P, Kroutchinina N (2001) Microfabricated polycarbonate CE devices for DNA analysis. Anal Chem 73:4196–4201

    Article  Google Scholar 

  • Martin RS, Gawron AJ, Lunte SM, Henry CS (2000) Dual-electrode electrochemical detection for poly(dimethylsiloxane)-fabricated capillary electrophoresis microchips. Anal Chem 72:3196–3202

    Article  Google Scholar 

  • Martynova L, Locascio LE, Gaitan M, Kramer GW, Christensen RG, MacCrehan WA (1997) Fabrication of plastic microfluid channels by imprinting methods. Anal Chem 69:4783–4789

    Article  Google Scholar 

  • Metz S, Jiguet S, Bertsch A, Renaud Ph (2004) Polymide and SU-8 microfluidic devices manufactured by heat-depolymerizable sacrificial material technique. Lab Chip 4:114–120

    Article  Google Scholar 

  • Peeni BA, Conkey DB, Barber JP, Kelly R, Lee ML, Woolley AT, Hawkins AR (2005) Planar thin film device for capillary electrophoresis. Lab Chip 5:501–505

    Article  Google Scholar 

  • Peeni BA, Lee ML, Hawkins AR, Woolley AT (2006) Sacrificial layer microfluidic device fabrication methods. Electrophoresis 27:4888–4895

    Article  Google Scholar 

  • Quake SR, Scherer A (2000) From micro- to nanofabrication with soft materials. Science 290:1536–1540

    Article  Google Scholar 

  • Salas-Vernis JL, Jayachandran JP, Park A, Kellerher HA, Allen SAB, Kohl PA (2004) Hydrophoic/hydrophilic surface modification within buried air channels. J Vac Sci Technol B 22:953

    Article  Google Scholar 

  • Shimbo M, Furukawa K, Fukuda K, Tanzawa K (1986) Silicon-to-silicon direct bonding method. J Appl Phys 60:2987–2989

    Article  Google Scholar 

  • Steigert J, Brett O, Mueller C, Strasser M, Wangler N, Reinecke H, Daub M, Zengerle R (2008) A versatile and flexible low-temperature full-wafer bonding process of monolithic 3D microfluidic structures in SU-8. J Micromech Microeng 1–8

  • Tsau CH, Spearing SM, Schmidt MA (2002) Fabrication of wafer-level thermocompression bonds. J Microelectromech Syst 11:641–647

    Article  Google Scholar 

  • Walsh K, Norville J, Tai Y-C (2001) Photoresist as a sacrificial layer by dissolution in acetone. In: The 14th IEEE international conference on Micro Electro Mechanical Systems, MEMS 2001. Interlaken, Switzerland, pp 114–117

  • Wen J, Lin YH, Xiang F, Matson DW, Udseth HR, Smith RD (2000) Microfabricated isoelectric focusing device for direct electrospray ionization-mass spectrometry. Electrophoresis 21:191–197

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the Micron Foundation and the Brigham Young University Office of Research and Creative Activities for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron R. Hawkins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carron, C.J., Phillips, M., Phillips, B.S. et al. Photo-definable microchannels made with spin-on polymers and short sacrificial etch times. Microfluid Nanofluid 7, 283–289 (2009). https://doi.org/10.1007/s10404-009-0404-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-009-0404-y

Keywords

Navigation