Skip to main content
Log in

Numerical analysis on electroosmotic flows in a microchannel with rectangle-waved surface roughness using the Poisson–Nernst–Planck model

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The present study has numerically investigated two-dimensional electroosmotic flows in a microchannel with dielectric walls of rectangle-waved surface roughness to understand the roughness effect. For the study, numerical simulations are performed by employing the Nernst–Planck equation for the ionic species and the Poisson equation for the electric potential, together with the traditional Navier–Stokes equation. Results show that the steady electroosmotic flow and ionic-species transport in a microscale channel are well predicted by the Poisson–Nernst–Planck model and depend significantly on the shape of surface roughness such as the amplitude and periodic length of wall wave. It is found that the fluid flows along the surface of waved wall without involving any flow separation because of the very strong normal component of EDL (electric double layer) electric field. The flow rate decreases exponentially with the amplitude of wall wave, whereas it increases linearly with the periodic length. It is mainly due to the fact that the external electric-potential distribution plays a crucial role in driving the electroosmotic flow through a microscale channel with surface roughness. Finally, the present results using the Poisson–Nernst–Planck model are compared with those using the traditional Poisson–Boltzmann model which may be valid in these scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

C p , C m :

nondimensional concentrations

C 0 :

molar ionic concentration in the bulk region (mol/m3)

D p , D m , D :

ionic diffusion coefficients (m2/s)

E i :

nondimensional total electric field component

E ϕ,i :

nondimensional external electric field component

E ψ,i :

nondimensional EDL electric field component

E 0 :

mean external streamwise electric field (V/m)

F :

Faraday constant (=96,485.338,3 C/mol)

F e,i :

nondimensional total electric force component

F e,ϕ,i :

nondimensional external electric force component

F e,ψ,i :

nondimensional EDL electric force component

H :

channel half-width (m)

h :

nondimensional amplitude of wall wave

L :

nondimensional periodic length of wall wave

Pe :

Peclet number (=U eo H/D)

p :

nondimensional pressure

Q :

nondimensional flow rate

Q * :

real flow rate (m3/s)

R :

gas constant (=8.314 J K−1 mol−1)

Re :

Reynolds number (=U eo H/ν)

Sc :

Schmidt number (=ν/D)

T :

absolute temperature (K)

t :

nondimensional time

U eo :

electroosmotic velocity (=ɛζ0 E 0/ρν, m/s)

u i :

nondimensional velocity components

x i :

nondimensional Cartesian coordinates

z p , z m , z :

ionic valences

β:

nondimensional parameter (=PeΩ)

Δ:

increment

ɛ:

fluid permittivity (C V−1 m−1 )

ζ0 :

reference zeta potential (V)

ζ *0 :

nondimensional reference zeta potential (=−zFζ0/RT)

κ:

nondimensional EDL thickness (=λ/H)

λ:

EDL thickness [=(ɛRT/2F 2 z 2 C 0)1/2, m]

ν:

fluid kinematic viscosity (m2/s)

ρ:

fluid density (kg/m3)

ρ e :

nondimensional volumetric electric-charge density

σ0 :

surface electric-charge density (C/m2)

Φ:

nondimensional total electric potential

ϕ:

nondimensional external electric potential

ψ:

nondimensional EDL electric potential

Ω:

nondimensional parameter (=ζ0/E 0 H)

i, j :

coordinate indices (1,2)

m :

anions

n :

wall-normal direction

p :

cations

t :

wall-tangential direction

References

  • Fu L-M, Lin J-Y, Yang R-J (2003) Analysis of electroosmotic flow with step change in zeta potential. J Colloid Interface Sci 258:266–275

    Article  Google Scholar 

  • Hlushkou D, Kandhai D, Tallarek U (2004) Coupled lattice-Boltzmann and finite-difference simulation of electroosmosis in microfluidic channels. Int J Numer Methods Fluids 46:507–532

    Article  MATH  Google Scholar 

  • Hu L, Harrison JD, Masliyah JH (1999) Numerical model of electrokinetic flow for capillary electrophoresis. J Colloid Interface Sci 215:300–312

    Article  Google Scholar 

  • Hu Y, Werner C, Li D (2003) Electrokinetic transport through rough microchannels. Anal Chem 75:5747–5758

    Article  Google Scholar 

  • Hu Y, Werner C, Li D (2004) Influence of the three-dimensional heterogeneous roughness on electrokinetic transport in microchannels. J Colloid Interface Sci 280:527–536

    Article  Google Scholar 

  • Hu Y, Xuan X, Werner C, Li D (2007) Electroosmotic flow in microchannels with prismatic elements. Microfluid Nanofluid 3:151–160

    Article  Google Scholar 

  • Kang S, Suh YK (2006) Unsteady electroosmotic channel flows with the nonoverlapped and overlapped electric double layers. J Mech Sci Technol 20:2250–2264

    Article  Google Scholar 

  • Keh HJ, Tseng HC (2001) Transient electrokinetic flow in fine capillaries. J Colloid Interface Sci 242:450–459

    Article  Google Scholar 

  • Kim D, Darve E (2006) Molecular dynamics simulation of electro-osmotic flows in rough wall nanochannels. Phys Rev E 73:051203

    Google Scholar 

  • Kwak HS, Hasselbrink EF Jr (2005) Timescales for relaxation to Boltzmann equilibrium in nanopores. J Colloid Interface Sci 284:753–758

    Article  Google Scholar 

  • Li D (2004) Electrokinetics in microfluidics. Elsevier, London

    Google Scholar 

  • Lin JY, Fu LM, Yang RJ (2002) Numerical simulation of electrokinetic focusing in microfluidic chips. J Micromech Microeng 12:955–961

    Article  Google Scholar 

  • Lin H, Storey BD, Oddy MH, Chen C-H, Santiago JG (2004) Instability of electrokinetic microchannel flows with conductivity gradients. Phys Fluids 16:1922–1935

    Article  Google Scholar 

  • Park HM, Lee JS, Kim TW (2007) Comparison of the Nernst–Planck model and the Poisson–Boltzmann model for electroosmotic flows in microchannels. J Colloid Interface Sci 315:731–739

    Article  Google Scholar 

  • Patankar NA, Hu HH (1998) Numerical simulation of electroosmotic flow. Anal Chem 70:1870–1881

    Article  Google Scholar 

  • Qian S, Bau HH (2005) Theoretical investigation of electro-osmotic flows and chaotic stirring in rectangular cavities. Appl Math Model 29:726–753

    Article  MATH  Google Scholar 

  • Qiao R (2007) Effects of molecular level surface roughness on electroosmotic flow. Microfluid Nanofluid 3:33–38

    Article  MathSciNet  Google Scholar 

  • Qu W, Li D (2000) A model for overlapped EDL fields. J Colloid Interface Sci 224:397–407

    Article  Google Scholar 

  • Wang M, Chen S (2007) Electroosmosis in homogeneously charged micro- and nanoscale random porous media. J Colloid Interface Sci 314:264–273

    Article  Google Scholar 

  • Wang M, Wang J, Chen S (2007) Roughness and cavitations effects on electro-osmotic flows in rough microchannels using the lattice Poisson–Boltzmann methods. J Comput Phys 226:836–851

    Article  MATH  Google Scholar 

  • Wang M, Wang J, Chen S (2008) On applicability of Poisson–Boltzmann equation for micro- and nanoscale electroosmotic flows. Commun Comput Phys 3:1087–1099

    Google Scholar 

  • Yang R-J, Fu L-M, Hwang C-C (2001a) Electroosmotic entry flow in a microchannel. J Colloid Interface Sci 244:173–179

    Article  Google Scholar 

  • Yang R-J, Fu L-M, Lin Y-C (2001b) Electroosmotic flow in microchannels. J Colloid Interface Sci 239:98–105

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the NRL (National Research Laboratory) Program of the Ministry of Education, Science and Technology, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangmo Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, S., Suh, Y.K. Numerical analysis on electroosmotic flows in a microchannel with rectangle-waved surface roughness using the Poisson–Nernst–Planck model. Microfluid Nanofluid 6, 461–477 (2009). https://doi.org/10.1007/s10404-008-0321-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-008-0321-5

Keywords

Navigation