Skip to main content

Electroosmotically driven creeping flows in a wavy microchannel

Abstract

We report our investigation on electroosmotic flow (EOF) in a wavy channel between a plane wall and a sinusoidal wall. An exact solution is obtained by using complex function formulation and boundary integral method. The effects of the channel width and wave amplitude on the electric field, streamline pattern, and flow field are studied. When a pressure gradient of sufficient strength in the opposite direction is added to an EOF in the wavy channel, various patterns of recirculation regions are observed. Experimental results are presented to validate qualitatively the theoretical description. The solution is further exploited to determine the onset condition of flow recirculation and the size of the recirculation region. It is found that they are dependent on one dimensionless parameter related to forces (K, the ratio of the pressure force to the electrokinetic force) and two dimensionless parameters related to the channel geometry (α, the ratio of the wave amplitude to the wavelength, and h, the ratio of the channel width to the wavelength).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  • Ajdari A (1995) Elctroosmosis on inhomogeneously charged surfaces. Phys Rev Lett 75:755–758

    Article  Google Scholar 

  • Bhattacharyya S, Zheng Z, Conlisk AT (2005) Electro-osmotic flow in two-dimensional charged micro- and nanochannels. J Fluid Mech 540:247–267

    MATH  Article  MathSciNet  Google Scholar 

  • Bianchi F, Ferrigno R, Girault HH (2000) Finite element simulation of an electroosmotic-driven flow division at a T-junction of microscale dimensions. Anal Chem 72:1987–1993

    Article  Google Scholar 

  • Brunet E, Ajdari A (2006) Thin double layer approximation to describe streaming current fields in complex geometries: analytical framework and applications to microfluidics. Phys Rev E 73:056306

    Article  Google Scholar 

  • Burns JC, Parkes T (1967) Peristaltic motion. J Fluid Mech 29:731–743

    Article  Google Scholar 

  • Chow JCF, Soda K (1972) Laminar-flow in tubes with constriction. Phys Fluids 15:1700–1706

    MATH  Article  Google Scholar 

  • Cummings EB, Griffiths SK, Nilson RH, Paul PH (2000) Conditions for similitude between the fluid velocity and electric field in electroosmotic flow. Anal Chem 72:2526–2532

    Article  Google Scholar 

  • Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984

    Article  Google Scholar 

  • Ghosal S (2002) Lubrication theory for electro-osmotic flow in a microfluidic channel of slowly varying cross-section and wall charge. J Fluid Mech 459:103–128

    MATH  Article  Google Scholar 

  • Griffiths SK, Nilson RH (2000) Electroosmotic fluid motion and late-time solute transport for large zeta potentials. Anal Chem 72:4767–4777

    Article  Google Scholar 

  • Hemmat M, Borhan A (1995) Creeping flow-through sinusoidally constricted capillaries. Phys Fluids 7:2111–2121

    MATH  Article  Google Scholar 

  • Hu YD, Werner C, Li DQ (2004) Influence of the three-dimensional heterogeneous roughness on electrokinetic transport in microchannels. J Colloid Interface Sci 280:527–536

    Article  Google Scholar 

  • Jacobson SC, Hergenroder R, Koutny LB, Warmack RJ, Ramsey JM (1994) Effects of injection schemes and column geometry on the performance of microchip electrophoresis devices. Anal Chem 66:1107–1113

    Article  Google Scholar 

  • Johnson TJ, Ross D, Locascio LE (2002) Rapid microfluidic mixing. Anal Chem 74:45–51

    Article  Google Scholar 

  • Lauga E, Stroock AD, Stone HA (2004) Three-dimensional flows in slowly varying planar geometries. Phys Fluids 16:3051–3062

    Article  MathSciNet  Google Scholar 

  • Leneweit G, Auerbach D (1999) Detachment phenomena in low Reynolds number flows through sinusoidally constricted tubes. J Fluid Mech 387:129–150

    MATH  Article  Google Scholar 

  • Luo H, Pozrikidis C (2006) Shear-driven and channel flow of a liquid film over a corrugated or indented wall. J Fluid Mech 556:167–188

    MATH  Article  MathSciNet  Google Scholar 

  • Malevich AE, Mityushev VV, Adler PM (2006) Stokes flow through a channel with wavy walls. Acta Mech 182:151–182

    MATH  Article  Google Scholar 

  • Park SY, Russo CJ, Branton D, Stone HA (2006) Eddies in a bottleneck: an arbitrary Debye length theory for capillary electroosmosis. J Colloid Interface Sci 297:832–839

    Article  Google Scholar 

  • Patankar NA, Hu HH (1998) Numerical simulation of electroosmotic flow. Anal Chem 70:1870–1881

    Article  Google Scholar 

  • Polianin AD (2002) Handbook of linear partial differential equations for engineers and scientists. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Pozrikidis C (1987) Creeping Flow in Two-Dimensional Channels. J Fluid Mech 180:495–514

    Article  Google Scholar 

  • Pozrikidis C (1988) The flow of a liquid-film along a periodic wall. J Fluid Mech 188:275–300

    MATH  Article  Google Scholar 

  • Probstein RF (2003) Physicochemical hydrodynamics: an introduction, 2nd edn. Wiley-Interscience, Hoboken

    Google Scholar 

  • Qiao R, Aluru NR (2002) A compact model for electroosmotic flows in microfluidic devices. J Micromech Microeng 12:625–635

    Article  Google Scholar 

  • SalimiMoosavi H, Tang T, Harrison DJ (1997) Electroosmotic pumping of organic solvents and reagents in microfabricated reactor chips. J Am Chem Soc 119:8716–8717

    Article  Google Scholar 

  • Santiago JG (2001) Electroosmotic flows in microchannels with finite inertial and pressure forces. Anal Chem 73:2353–2365

    Article  Google Scholar 

  • Scholle M (2004) Creeping couette flow over an undulated plate. Arch Appl Mech 73:823–840

    MATH  Google Scholar 

  • Sobey IJ (1980) Flow through furrowed channels. 1. Calculated flow patterns. J Fluid Mech 96:1–26

    MATH  Article  Google Scholar 

  • Stephanoff KD, Sobey IJ, Bellhouse BJ (1980) Flow through furrowed channels. 2. Observed flow patterns. J Fluid Mech 96:27–32

    MATH  Article  Google Scholar 

  • Stone HA, Kim S (2001) Microfluidics: basic issues, applications, and challenges. AIChE J 47:1250–1254

    Article  Google Scholar 

  • Tsangaris S, Leiter E (1984) On laminar steady flow in sinusoidal channels. J Eng Math 18:89–103

    MATH  Article  Google Scholar 

  • Wang CY (1978) Drag due to a striated boundary in slow couette-flow. Phys Fluids 21:697–698

    MATH  Article  Google Scholar 

  • Wang CY (2003) Flow over a surface with parallel grooves. Phys Fluids 15:1114–1121

    Article  Google Scholar 

  • Wei HH, Waters SL, Liu SQ, Grotberg JB (2003) Flow in a wavy-walled channel lined with a poroelastic layer. J Fluid Mech 492:23–45

    MATH  Article  Google Scholar 

  • White FM (1991) Viscous fluid flow, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Xuan XC, Li DQ (2005) Electroosmotic flow in microchannels with arbitrary geometry and arbitrary distribution of wall charge. J Colloid Interface Sci 289:291–303

    Article  Google Scholar 

  • Xuan XC, Xu B, Li DQ (2005) Accelerated particle electrophoretic motion and separation in converging-diverging microchannels. Anal Chem 77:4323–4328

    Article  Google Scholar 

  • Zhou H, Martinuzzi RJ, Khayat RE, Straatman AG, Abu-Ramadan E (2003) Influence of wall shape on vortex formation in modulated channel flow. Phys Fluids 15:3114–3133

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported in part by Army Research Office (48461-LS), National Science Foundation (CHE-0515711), Glenn Research Center of National Aeronautics and Space Administration (NASA) (NAG 3-2930), and the University of Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Hugh Fan.

Appendix: Solution of electric field and stream function

Appendix: Solution of electric field and stream function

This Appendix describes the details in solving the periodic functions \(G^\varphi (x), G^\beta (x),R^\varphi (x), R^\beta (x),Q^\varphi (x),\) and Q β(x) that are used for calculating G(ζ), R(ζ) and Q(ζ). The symmetry of the channel geometry ensures that for Stokes flow \(\overline {\Theta (x)} =\Theta (-x),\) so that \(\Re [\Theta (x)]=\frac{\Theta (x)+\Theta (-x)}{2}\) and \(\Im [\Theta (x)]=\frac{\Theta (x)-\Theta (-x)}{2i}.\) Hence Eqs. (29), (30) can be reduced to

$$m\left({g_m^\varphi +g_{-m}^\varphi} \right)=0$$
(55)

and

$$m\left({g_m^\beta +g_{-m}^\beta} \right)=\frac{\alpha }{4\pi}\left({\delta_{m,1} -\delta_{m,-1}} \right).$$
(56)

Similarly, Eq. (33) becomes

$$\exp (nh)g_n^\varphi -\sum\limits_{m=-\infty}^{+\infty } {g_m^\beta E_{m,n}} =0,$$
(57)

where \(E_{m,n} =\left\{{\begin{array}{l} \delta_{m,0} -\frac{\alpha}{2}\left({\delta_{m,1} -\delta_{m,-1}} \right),n=0 \\ \frac{m}{n}I_{n-m} (-n\alpha),n\ne 0 \\ \end{array}} \right.,\) and δ is Kronecker delta, and I n (z) is the nth order modified Bessel function of the first kind, \(I_n \left(z \right)=\frac{1}{2\pi}\int\nolimits_{\theta =-\pi}^\pi {\exp (z\cos \theta)\cos n\theta {\rm d}\theta}.\) These three Eqs. (55)–(57) form a complete set for coefficients \(\left\{{g_m^\varphi } \right\}\) and \(\left\{{g_m^\beta} \right\}, m\in \left\{{{\mathbb{Z}}\backslash \{0\}} \right\}.\)

Since the electric field is \(\vec {E}=-\nabla \phi,\) as a result, the tangential electric field strength along the walls [Eqs. (34, 35)] can be evaluated using:

$$E_t^\varphi (x)=\sum\limits_{m=-\infty}^{+\infty} {2mg_m^\varphi \exp (-imx)} -\frac{1}{2\pi}$$
(58)

and

$$E_t^\beta (x)=\frac{\sum\nolimits_{m=-\infty}^{+\infty} {\left[ {m\left({g_m^\beta -g_{-m}^\beta} \right)} \right]\exp (-imx)} -\frac{1}{2\pi}}{\sqrt {1+\alpha^2\sin^2(x)}}.$$
(59)

For the stream function, Eqs. (46)–(49) give

$$m\left({r_m^\varphi +r_{-m}^\varphi} \right)+mh\left({q_m^\varphi +q_{-m}^\varphi} \right)=0,$$
(60)
$$\begin{aligned} \,&2h\delta_{m,0} B-m\left({r_m^\varphi -r_{-m}^\varphi} \right)+\left({q_m^\varphi +q_{-m}^\varphi} \right)-mh\left({q_m^\varphi -q_{-m}^\varphi} \right)\\ \,&\quad=\frac{Kh^2}{4\pi}\delta_{m,0} +m\left({g_m^\varphi -g_{-m}^\varphi} \right)-\frac{1}{2\pi}\delta_{m,0}, \end{aligned}$$
(61)
$$\begin{aligned} \,&\frac{\alpha^2}{4}\left({2\delta_{m,0} +\delta_{m,2} +\delta _{m,-2}} \right)B+\left({r_m^\beta +r_{-m}^\beta} \right)-\frac{\alpha}{2}\left({q_{m+1}^\beta +q_{m-1}^\beta +q_{-m+1}^\beta +q_{-m-1}^\beta} \right)\\ \,&\quad=-\frac{K\alpha^3}{96\pi}\left({3\delta_{m,1} +3\delta _{m,-1} +\delta_{m,3} +\delta_{m,-3}} \right),\end{aligned}$$
(62)

and

$$\begin{aligned} \,& -\alpha \left({\delta_{m,1} +\delta_{m,-1}} \right)B-m\left({r_m^\beta -r_{-m}^\beta} \right)+\left({q_m^\beta +q_{-m}^\beta} \right)+\frac{\alpha}{2}\left[ {\left({m+1} \right)\left({q_{m+1}^\beta -q_{-m-1}^\beta} \right)+\left({m-1} \right)\left({q_{m-1}^\beta -q_{-m+1}^\beta} \right)} \right] \\ \,&\quad =\frac{K\alpha^2}{16\pi}\left({2\delta_{m,0} +\delta_{m,2} +\delta _{m,-2}} \right)+m\left({g_m^\beta -g_{-m}^\beta} \right)-\frac{1}{2\pi}\delta_{m,0}. \end{aligned}$$
(63)

From Eqs. (50), (51) we obtain

$$\exp (nh)r_n^\varphi -\sum\limits_{m=-\infty}^{+\infty } {r_m^\beta E_{m,n}} =0$$
(64)

and

$$\exp (nh)q_n^\varphi -\sum\limits_{m=-\infty}^{+\infty } {q_m^\beta E_{m,n}} =0.$$
(65)

Equations (60)–(65) can be further simplified by eliminating \(\left\{{r_m^\varphi} \right\}\) and \(\left\{{q_m^\varphi } \right\}\) from the equation set first. We take index n as a positive integer only in the analysis.

Rewrite Eq. (65) as

$$q_n^\varphi =\frac{1}{n}\exp (-nh)\sum\limits_{m=-\infty}^{+\infty} {mI_{n-m}^- q_m^\beta},$$
(66)

and take the negative indices,

$$q_{-n}^\varphi =-\frac{1}{n}\exp (nh)\sum\limits_{m=-\infty}^{+\infty} {mI_{n+m}^+ q_m^\beta}.$$
(67)

where the (nm)th order modified Bessel function of the first kind for argument −nα, I n-m (−nα ), has been written as I nm for simplicity. Similarly, I + n+m denotes the (n + m)th order modified Bessel function of the first kind for argument nα, I n+m (nα ). The same convention is used hereinafter in this appendix. Equation (64) is rewritten as

$$r_n^\varphi =\frac{1}{n}\exp (-nh)\sum\limits_{m=-\infty}^{+\infty} {mI_{n-m}^- r_m^\beta}$$
(68)

and

$$r_{-n}^\varphi =-\frac{1}{n}\exp (nh)\sum\limits_{m=-\infty}^{+\infty} {mI_{n+m}^+ r_m^\beta}.$$
(69)

Changing the dummy variable in Eqs. (60) and (61) from m to n, and using the expressions in Eqs. (66)–(69) to eliminate r φ n , r φn , q φ n and q φn in Eqs. (60) and (61), we obtain

$$\sum\limits_{m=-\infty}^{+\infty} {m\left[ {\frac{I_{n-m}^-}{\exp (2nh)}-I_{n+m}^+} \right]r_m^\beta} +\sum\limits_{m=-\infty}^{+\infty} {mh\left[ {\frac{I_{n-m}^-}{\exp (2nh)}-I_{n+m}^+} \right]q_m^\beta} =0$$
(70)

and

$$\sum\limits_{m=-\infty}^{+\infty} {m\left[ {\frac{I_{n-m}^-}{\exp (2nh)}+I_{n+m}^+} \right]r_m^\beta} -\sum\limits_{m=-\infty}^{+\infty} {m\left[ {\left({\frac{1}{n}-h} \right)\frac{I_{n-m}^-}{\exp (2nh)}-\left({\frac{1}{n}+h} \right)I_{n+m}^+} \right]q_m^\beta} =-\frac{n\left[ {g_n^\varphi -g_{-n}^\varphi} \right]}{\exp (nh)}.$$
(71)

Next, we multiply I n-m (−nα) on both sides of Eq. (62) and take summation from m = −∞ to m =  +∞ to obtain

$$\begin{aligned}\,& \frac{\alpha^2}{4}\left[ {2I_n^- +I_{n+2}^- +I_{{n-2}}^-} \right]B+\sum\limits_{m=-\infty}^{+\infty} {\left[ {I_{n-m}^- +I_{n+m}^-} \right]r_m^\beta} -\sum\limits_{m=-\infty}^{+\infty} {\frac{\alpha}{2}\left[ {I_{n+m-1}^- +I_{n+m+1}^- +I_{n-m-1}^- +I_{n-m+1}^-} \right]q_m^\beta} \\ \,&\quad =-\frac{K\alpha^3}{96\pi}\left[ {I_{n-3}^- +I_{n+3}^- +3I_{n-1}^- +3I_{n+1}^-} \right]. \end{aligned}$$
(72)

A similar procedure is applied to Eq. (63), and we have

$$\begin{aligned} \,& -\alpha \left[ {I_{n-1}^- +I_{n+1}^-} \right]B-\sum\limits_{m=-\infty}^{+\infty} {m(I_{n-m}^- +I_{n+m}^-)r_m^\beta} +\sum\limits_{m=-\infty}^{+\infty} {\left[ {\left({I_{n-m}^- +I_{n+m}^-} \right)+\frac{\alpha}{2}m\left({I_{n-m-1}^- +I_{n-m+1}^- +I_{n+m-1}^- +I_{n+m+1}^-} \right)} \right]q_m^\beta} \\ \,&\quad =\frac{K\alpha^2}{16\pi}\left[ {2I_n^- +I_{n-2}^- +I_{n+2}^- } \right]+\sum\limits_{m=-\infty}^\infty {m\left[ {I_{n-m}^- +I_{n+m}^-} \right]g_m^\beta} -\frac{1}{2\pi}I_n^-. \end{aligned}$$
(73)

Taking the zeroth order of Eqs. (61), (62), (63), and (65), we obtain

$$q_0^\varphi +Bh=\frac{Kh^2}{8\pi}-\frac{1}{4\pi},$$
(74)
$$r_0^\beta -\frac{\alpha}{2}\left({q_1^\beta +q_{-1}^\beta} \right)+\frac{\alpha^2}{4}B=0,$$
(75)
$$q_0^\beta +\frac{\alpha}{2}\left({q_1^\beta -q_{-1}^\beta} \right)=\frac{K\alpha^2}{16\pi}-\frac{1}{4\pi},$$
(76)

and

$$q_0^\varphi =q_0^\beta -\frac{\alpha}{2}\left({q_1^\beta -q_{-1}^\beta} \right).$$
(77)

Equations (70)–(73), supplemented by Eqs. (74)–(77), are sufficient to solve for the Fourier coefficient sets \(\left\{{r_m^\beta} \right\}\) and \(\left\{{q_m^\beta} \right\}.\) Once they are solved, q φ n and r φ n are determined from Eqs. (66) and (68); q φn and r φn are solved from Eqs. (60) and (61), as

$$q_{-n}^\varphi =\left({2nh-1} \right)q_n^\varphi +2nr_n^\varphi +n\left({g_n^\varphi -g_{-n}^\varphi} \right),$$
(78)

and

$$ r_{-n}^\varphi =-h(q_n^\varphi +q_{-n}^\varphi)-r_n^\varphi.$$
(79)

The zeroth term of \(\left\{{r_m^\varphi} \right\}\) and \(\left\{{q_m^\varphi} \right\}\) are obtained from Eqs. (64) and (65) at n = 0, namely, Eq. (77) and

$$r_0^\varphi =r_0^\beta -\frac{\alpha}{2}\left({r_1^\beta -r_{-1}^\beta} \right).$$
(80)

In practical calculation, the infinite series in Eqs. (70)–(73) are truncated to only N terms. Together with Eqs. (74)–(77), there are a total of 4N + 4 equations to solve for B, q φ0 , \(\left\{{r_m^\beta} \right\}\) and \(\left\{{q_m^\beta} \right\},\) \(m\in \left[ {-N,N} \right].\) Subsequently, \(\left\{{r_m^\varphi} \right\}\) and \(\left\{{q_m^\varphi} \right\}\) are solved from Eqs. (66), (68), and (77)–(80). Finally \(\left\{{r_m^\beta} \right\},\) \(\left\{{r_m^\varphi} \right\},\) \(\left\{{q_m^\varphi} \right\}\) and \(\left\{{q_m^\beta} \right\}\) are used to construct R(ζ) and Q(ζ) in Eqs. (44) and (45), and they are used to obtain ψ(x,y) in Eq. (40).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xia, Z., Mei, R., Sheplak, M. et al. Electroosmotically driven creeping flows in a wavy microchannel. Microfluid Nanofluid 6, 37–52 (2009). https://doi.org/10.1007/s10404-008-0290-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-008-0290-8

Keywords

  • Microfluidics
  • Wavy channels
  • Recirculation
  • Electroosmotic flow
  • Complex function