Microfluidics and Nanofluidics

, Volume 4, Issue 1–2, pp 53–79 | Cite as

Optofluidic integration for microanalysis



This review describes recent research in the application of optical techniques to microfluidic systems for chemical and biochemical analysis. The “lab-on-a-chip” presents great benefits in terms of reagent and sample consumption, speed, precision, and automation of analysis, and thus cost and ease of use, resulting in rapidly escalating adoption of microfluidic approaches. The use of light for detection of particles and chemical species within these systems is widespread because of the sensitivity and specificity which can be achieved, and optical trapping, manipulation and sorting of particles show significant benefits in terms of discrimination and reconfigurability. Nonetheless, the full integration of optical functions within microfluidic chips is in its infancy, and this review aims to highlight approaches, which may contribute to further miniaturisation and integration.


Lab-on-a-chip Microfluidics Optical detection Optical trapping Integrated optics Optofluidics 


  1. Applegate RW, Squier J, Vestad T, Oakey J, Marr DWM (2004) Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars. Opt Express 12:4390–4398Google Scholar
  2. Applegate RW, Squier J, Vestad T, Oakey J, Marr DWM, Bado P, Dugan MA, Said AA (2006) Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping. Lab Chip 6:422–426Google Scholar
  3. Ashkin A (1970) Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24:156–159Google Scholar
  4. Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288–290Google Scholar
  5. Bernini R, De Nuccio E, Brescia F, Minardo A, Zeni L, Sarro PM, Palumbo R, Scarfi MR (2006) Development and characterization of an integrated silicon micro flow cytometer. Anal Bioanal Chem 386:1267–1272Google Scholar
  6. Blanco FJ, Agirregabiria M, Berganzo J, Mayora K, Elizalde J, Calle A, Dominguez C, Lechuga LM (2006) Microfluidic-optical integrated CMOS compatible devices for label-free biochemical sensing. J Micromech Microeng 16:1006–1016Google Scholar
  7. Buican TN, Smyth MJ, Crissman HA, Salzman GC, Stewart CC, Martin JC (1987) Automated single-cell manipulation and sorting by light trapping. Appl Opt 26:5311–5316Google Scholar
  8. Choi CJ, Cunningham BT (2006) Single-step fabrication and characterization of photonic crystal biosensors with polymer microfluidic channels. Lab Chip 6:1373–1380Google Scholar
  9. Connatser RM, Riddle LA, Sepaniak MJ (2004) Metal-polymer nanocomposites for integrated microfluidic separations and surface enhanced Raman spectroscopic detection. J Sep Sci 27:1545–1550Google Scholar
  10. Constable A, Kim J, Mervis J, Zarinetchi F, Prentiss M (1993) Demonstration of a fibre-optical light-force trap. Opt. Lett. 18:1867–1869Google Scholar
  11. Costin CD, Olund RK, Staggemeier BA, Torgerson AK, Synovec RE (2003) Diffusion coefficient measurement in a microfluidic analyzer using dual-beam microscale-refractive index gradient detection application to on-chip molecular size determination. J Chromatogr A 1013:77–91Google Scholar
  12. Craighead H (2006) Future lab-on-a-chip technologies for interrogating individual molecules. Nature 442:387–393Google Scholar
  13. Cran-McGreehin SJ, Dholakia K, Krauss TF (2006a) Monolithic integration of microfluidic channels and semiconductor lasers. Opt Express 14:7723–7729Google Scholar
  14. Cran-McGreehin SJ, Krauss TF, Dholakia K (2006b) Integrated monolithic optical manipulation. Lab Chip 6:1122–1124Google Scholar
  15. Creely CM, Singh GP, Petrov D (2005) Dual wavelength optical tweezers for confocal Raman spectroscopy. Opt Commun 245:465–470Google Scholar
  16. Culshaw B (2004) Optical fiber sensor technologies: opportunities and—perhaps—pitfalls. J Lightwave Technol 22:39–50Google Scholar
  17. Datta A, Eom I-Y, Dhar A, Kuban P, Manor R, Ahmad I, Gangopadhyay S, Dallas T, Holtz M, Temkin H, Dasgupta PK (2003) Microfabrication and characterisation of Teflon AF-coated liquid core waveguide channels in silicon. IEEE Sensors J 3:788–795Google Scholar
  18. deMello A (2006) Control and detection of chemical reactions in microfluidic systems. Nature 442:394–402Google Scholar
  19. Destandau E, Lefevre J-P, Eddine ACF, Desportes S, Jullien MC, Hierle R, Leray I, Valeur B, Delaire JA (2007) A novel microfluidic flow-injection analysis device with fluorescence detection for cation sensing. Application to potassium. Anal Bioanal Chem. 387:2627–2632Google Scholar
  20. Dholakia K, Reece P (2006) Optical micromanipulation takes hold. Nanotoday 1:18–27Google Scholar
  21. Dishinger JF, Kennedy RT (2007) Serial immunoassay in parallel on a microfluidic chip for monitoring hormone secretion from living cells. Anal Chem 79:947–954Google Scholar
  22. Dittrich PS, Manz A (2005) Single-molecule fluorescence detection in microfluidic channels-the Holy Grail in μTAS? Anal Bioanal Chem 382:1771–1782Google Scholar
  23. Dittrich PS, Tachikawa K, Manz A (2006) Micro total analysis systems. Latest advancements and trends. Anal Chem 78:3887–3907Google Scholar
  24. Docherty FT, Monaghan PB, Keir R, Graham D, Smith WE, Cooper JM (2004) The first SERRS multiplexing from labelled oligonucleotides in a microfluidics lab-on-a-chip. Chem Commun (1):118–119Google Scholar
  25. Duggan MP, McCreedy T, Aylott JW (2003) A non-invasive analysis method for on-chip spectrophotometric detection using liquid-core waveguiding within a 3D architecture. Analyst 128:1336–1340Google Scholar
  26. Duveneck GL, Abel AP, Bopp MA, Kresbach GM, Ehrat M (2002) Planar waveguides for ultra-high sensitivity of the analysis of nucleic acids. Anal Chim Act 469:49–61Google Scholar
  27. Edgar JS, Pabbati CP, Lorenz RM, He M, Fiorini GS, Chiu DT (2006) Capillary electrophoresis separation in the presence of an immiscible boundary for droplet analysis. Anal Chem 78:6948–6954Google Scholar
  28. El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442:403–411Google Scholar
  29. Erickson D, Li D (2004) Integrated microfluidic devices. Anal Chim Act 507:11–26Google Scholar
  30. Flynn RA, Birkbeck AL, Gross M, Ozkan M, Shao B, Wang MM, Esener SC (2002) Parallel transport of biological cells using individually addressable VCSEL arrays as optical tweezers. Sens Actuators B 87:239–243Google Scholar
  31. Fu AY, Spence C, Scherer A, Arnold FH, Quake SR (1999) Nat Biotech 17:1109–1111Google Scholar
  32. Fu J-L, Fang Q, Zhang T, Jin X-H, Fang Z-L (2006) Laser-induced fluorescence detection system for microfluidic chips based on an orthogonal optical arrangement. Anal Chem 78:3827–3834Google Scholar
  33. Furuki M, Kameoka J, Craighead HG, Isaacson MS (2001) Surface plasmon resonance sensors utilizing microfabricated channels. Sens Actuators 79:63–69Google Scholar
  34. Garcés-Chávez V, Dholakia K, Spalding GC (2005) Extended-area optically induced organization of microparticles on a surface. Appl Phys Lett 86:031106Google Scholar
  35. Gaugiran S, Gétin S, Fedeli JM, Colas G, Fuchs A, Chatelin F, Dérouard J (2005) Optical manipulation of microparticles and cells on silicon nitride waveguides. Opt Express 13:6956–6963Google Scholar
  36. Geßner R, Winter C, Rösch, Schmitt M, Petry R, Kiefer W, Lamkers M, Popp J (2004) Identification of biotic and abiotic particles by using a combination of optical tweezers and in situ Raman spectroscopy. Chem Phys Chem 5:1159–1170Google Scholar
  37. Ghaleb KA, Georges J (2004) Photothermal spectrometry for detection in miniaturized systems: relevant features, strategies and recent applications. Spectrochim Acta Part A 60:2793–2801Google Scholar
  38. Ghaleb KA, Georges J (2005) Signal optimisation in cw-laser crossed-beam photothermal spectrometry: influence of the chopping frequency, sample size and flow rate. Spectrochim Acta Part A 61:2849–2855Google Scholar
  39. Gong M, Wehmeyer KR, Limbach PA, Arias F, Heineman WR (2006) On-line sample preconcentration using field-amplified stacking injection in microchip capillary electrophoresis. Anal Chem 78:3730–3737Google Scholar
  40. Goto M, Sato K, Murakami A, Tokeshi M, Kitamori T (2005) Development of a microchip-based bioassay system using cultured cells. Anal Chem 77:2125–2131Google Scholar
  41. Götz S, Karst U (2007a) Recent developments in optical detection methods for microchip separations. Anal Bioanal Chem 387:183–192Google Scholar
  42. Götz S, Karst U (2007b) Wavelength-resolved fluorescence detector for microchip capillary electrophoresis separations. Sens Actuators B 123:622–627Google Scholar
  43. Götz S, Revermann T, Karst U (2007c) Quantitative on-chip determination of taurine in energy and sports drinks. Lab Chip 7:93–97Google Scholar
  44. Grujic K, Hellesø OG, Hole JP, Wilkinson JS (2005) Sorting of polystyrene microspheres using a Y-branched optical waveguide. Opt Express 13:1–7Google Scholar
  45. Grumann M, Stiegert J, Riegger L, Moser I, Enderle B, Riebeseel K, Urban G, Zengerle R, Ducrée (2006) Sensitivity enhancement for colorimetric glucose assays on whole blood by on-chip beam-guidance. Biomed Microdevices 8:209–214Google Scholar
  46. Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz D, Erickson HM, Ananthakrishnan, Mitchell D, Käs, Ulvick S, Bilby C (2005) Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 88:3689–3698Google Scholar
  47. Haes AJ, Terray A, Collins GE (2006) Bead-assisted displacement immunoassay for staphylococcal enterotoxin B on a microchip. Anal Chem 78:8412–8420Google Scholar
  48. Hart SJ, Terray A, Leski TA, Arnold J, Stroud R (2006) Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis. Anal Chem 78:3221–3225Google Scholar
  49. Hart SJ, Terray A, Arnold J, Leski TA (2007) Sample concentration using optical chromatography. Opt Express 15:2724–2731Google Scholar
  50. Heideman RG, Lambeck PV (1999) Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system. Sensors Actuat B 61:100–127Google Scholar
  51. Hellmich W, Greif D, Pelargus C, Anselmetti D, Ros A (2006) Improved native UV laser induced fluorescence detection for single cell analysis in poly(dimethylsiloxane) microfluidic devices. J Chromatogr A 1130:195–200Google Scholar
  52. Hiki S, Mawatari K, Hibara A, Tokeshi M, Kitamori T (2006) UV excitation thermal lens microscope for sensitive and nonlabeled detection of nonfluorescent molecules. Anal Chem 78:2859–2863Google Scholar
  53. Hofmann O, Wang X, Cornwell A, Beecher S, Raja A, Bradley DDC, deMello AJ, deMello JC (2006) Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection. Lab Chip 6:981–987Google Scholar
  54. Hole JP, Wilkinson JS, Grujic K, Hellesø OG (2005) Velocity distribution of gold nanoparticles trapped on an optical waveguide. Opt Express 13:3896–3901Google Scholar
  55. Hollars CW, Puls J, Olgica B, Olsan B, Talley CE, Lane SM, Huser T (2006) Bio-assay based on single molecule fluorescence detection in microfluidic channels. Anal Bioanal Chem 385:1384–1388Google Scholar
  56. Holmes D, Morgan H, Green NG (2006) High throughput particle analysis: combining dielectrophoresis article focussing with confocal optical detection. Biosens Bioelectron 21:1621–1630Google Scholar
  57. Hu J, Tarasov V, Agarwal A, Kimerling L, Carlie N, Petit L, Richardson K (2007) Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor. Opt Express 15:2307–2314Google Scholar
  58. Huang F-C, Liao C-S, Lee G-B (2006a) An integrated microfluidic chip for DNA/RNA amplification, electrophoresis separation and on-line optical detection. Electrophoresis 27:3297–3305Google Scholar
  59. Huang S-C, Lee G-B, Chien F-C, Chen S-J, Chen W-J, Yang M-C (2006b) A microfluidic system with integrated molecular imprinting polymer films for surface plasmon resonance detection. J Micromech Microeng 16:1251–1257Google Scholar
  60. Huang B, Wu H, Bhaya D, Grossman A, Granier S, Kobilka BK, Zare RN (2007) Counting low-copy number proteins in a single cell. Science 315:81–84Google Scholar
  61. Imasaka T (1998) Optical chromatography. A new tool for separation of particles. Analusis 26:M53–M55Google Scholar
  62. Inatomi K-I, Izuo S-I, Lee S-S (2006) Application of a microfluidic device for counting of bacteria. Lett Appl Microbiol 43:296–300Google Scholar
  63. Irawan R, Tay CM, Tjin SC, Fu CY (2006) Compact fluorescence detection using in-fiber microchannels-its potential for lab-on-a-chip applications. Lab Chip 6:1095–1098Google Scholar
  64. Jess PRT, Garcés-Chávez V, Smith D, Mazilu M, Paterson L, Riches A, Herrington CS, Sibbett W, Dholakia K (2006) Dual beam fibre trap for Raman microspectroscopy of single cells. Opt Express 14:5779–5791Google Scholar
  65. Jiang L, Pau S (2007) Integrated waveguide with a microfluidic channel in spiral geometry for spectroscopic applications. Appl Phys Lett 90:111108Google Scholar
  66. Jung B, Zhu Y, Santiago JG (2007a) Detection of 100 aM fluorophores using a high-sensitivity on-chip CE system and transient isotachophoresis. Anal Chem 79:345–349Google Scholar
  67. Jung J, Chen L, Lee S, Kim S, Seong GH, Choo J, Lee EK, Oh C-H, Lee S (2007b) Fast and sensitive DNA analysis using changes in the FRET signals of molecular beacons in a PDMS microfluidic channel. Anal Bioanal Chem 387:2609–2615Google Scholar
  68. Kakuta M, Takahashi H, Kazuno S, Murayama K, Ueno T, Tokeshi M (2006) Development of the microchip-based repeatable immunoassay system for clinical diagnosis. Meas Sci Technol 17:3189–3194Google Scholar
  69. Kamei T, Wada T (2006) Contact-lens type of micromachined hydrogenated amorphous Si fluorescence detector coupled with microfluidic electrophoresis devices. Appl Phys Lett 89:114101Google Scholar
  70. Kamei T, Toriello NM, Lagally ET, Blazej RG, Scherer JR, Street RA, Mathies RA (2005) Microfluidic genetic analysis with an integrated a-Si:H detector. Biomed Microdevices 7:147–152Google Scholar
  71. Kawata S, Sugiura T (1992) Movement of micrometer-sized particles in the evanescent field of a laser beam. Opt Lett 17:772–774Google Scholar
  72. Kawata S, Tani T (1996) Optically-driven Mie particles in an evanescent field along a channeled waveguide. Opt Lett 21:1768–1770Google Scholar
  73. Keir R, Igata E, Arundell M, Smith WE, Graham D, McHugh C, Cooper JM (2002) SERRS. In situ substrate formation and improved detection using microfluidics. Anal Chem 74:1503–1508Google Scholar
  74. Kelemen L, Valkai S, Ormos P (2006) Integrated optical motor. Appl Opt 45:2777–2780Google Scholar
  75. Khademhosseini A, Yeh J, Eng G, Karp J, Kaji H, Borenstein J, Farokhzad OC, Langer R (2005) Cell docking inside microwells within reversibly sealed microfluidic channels for fabricating multiphenotype cell arrays. Lab Chip 5:1380–1386Google Scholar
  76. Kim Y-H, Shin K-S, Kang J-Y, Yang E-G, Paek K-K, Seo D-S, Ju B-K (2006) Poly(dimethylsiloxane)-based packaging technique for microchip fluorescence detection system applications. J MEMS 15:1152–1158Google Scholar
  77. Kim S, Chen L, Lee S, Seong GH, Choo J, Lee EK, Oh C-H, Lee S (2007) Rapid DNA hybridisation analysis using a PDMS Microfluidic sensor and a molecular beacon. Anal Sci 23:401–405Google Scholar
  78. Kikutani Y, Hisamoto H, Tokeshi M, Kitamori T (2004) Micro wet analysis system using multi-phase laminar flows in three-dimensional microchannel network. Lab Chip 4:328–332Google Scholar
  79. Kitamori T, Tokeshi M, Hibara A, Sato K (2004) Thermal lens microscopy and microchip chemistry. Anal Chem 76:52A–60AGoogle Scholar
  80. Kitagawa F, Tsuneka T, Akimoto Y, Sueyoshi K, Uchiyama K, Hattori A, Otsuka K (2006) Toward million-fold sensitivity enhancement by sweeping in capillary electrophoresis combined with thermal lens microscopic detection using an interface chip. J Chromatogr A 1106:36–42Google Scholar
  81. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (2002) Surface-enhanced Raman scattering and biophysics. J Phys Condens Matter 14:R597–R624Google Scholar
  82. Korda PT, Spalding GC, Grier DG (2002) Evolution of a colloidal critical state in an optical pinning potential landscape. Phys Rev B 66:024504Google Scholar
  83. Kurita R, Yokota Y, Sato Y, Mizutani F, Niwa O (2006) On-chip enzyme immunoassay of a cardiac marker using a microfluidic device combined with a portable surface plasmon resonance system. Anal Chem 78:5525–5531Google Scholar
  84. Ladavac K, Grier DG (2004) Microoptomechanical pumps assembled and driven by holographic optical vortex arrays. Opt Express 12:1144–1149Google Scholar
  85. Lambeck PV (2006) Integrated optical sensors for the optical domain. Meas Sci Technol 17:R93–R116Google Scholar
  86. Leach J, Mushfique H, di Leonardo R, Padgett M, Cooper J (2006) An optically driven pump for microfluidics. Lab Chip 6:735–739Google Scholar
  87. Lechuga LM (2007) New frontiers in optical biosensing. In: Proceedings of 13th European conference on integrated optics (ECIO 2007) Copenhagen, Paper FPT2Google Scholar
  88. Lee D, Lee S, Seong GH, Choo J, Lee EK, Gweon D-G, Lee S (2006) Quantitative analysis of methyl parathion pesticides in a polydimethylsiloxane microfluidic channel using confocal surface-enhanced Raman Spectroscopy. Appl Spectrosc 60:373–377Google Scholar
  89. Lei KF, Law WC, Suen Y-K, Li WJ, Yam Y, Ho HP, Kong S-K (2007) A vortex pump-based optically-transparent microfluidic platform for biotech and medical applications. J Eng Med 221:129–141Google Scholar
  90. Leung S-A, Edel JB, Wootton RCR, deMello AJ (2004) Continuous real-time bubble monitoring in microchannels using refractive index detection. Meas Sci Technol 15:290–296Google Scholar
  91. Li H-F, Cai ZW, Lin J-M (2006) Separation of catecholamines by microchip electrophoresis with a simple integrated laser-induced fluorescence detector. Anal Chim Acta 565:183–189Google Scholar
  92. Liang Z, Chiem N, Ocvirk G, Tang T, Fluri K, Harrison DJ (1996) Microfabrication of a planar absorbance and fluorescence cell for integrated capillary electrophoresis devices. Anal Chem 68:1040–1046Google Scholar
  93. Liu GL, Lee LP (2005) Nanowell surface enhanced Raman scattering arrays fabricated in soft-lithography for label-free biomolecular detections in integrated microfluidics. Appl Phys Lett 87:074101Google Scholar
  94. Liu D, Zhou X, Zhong R, Ye N, Chang G, Xiong W, Mei X, Lin B (2006) Analysis of multiplex PCR fragments with PMMA microchip. Talanta 68:616–622Google Scholar
  95. Liu P, Seo TS, Beyor N, Shin K-J, Scherer JR, Mathies RA (2007) Integrated portable polymerase chain reaction-capillary electrophoresis microsystem for rapid forensic short tandem repeat typing. Anal Chem 79:1881–1889Google Scholar
  96. Llobera A, Wilke R, Büttgenbach S (2004) Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift. Lab Chip 4:24–27Google Scholar
  97. Llobera A, Wilke R, Büttgenbach S (2005) Optimization of poly(dimethylsiloxane) hollow prisms for optical sensing. Lab Chip 5:506–511Google Scholar
  98. Ma B, Zhou X, Wang G, Huang H, Dai Z, Qin J, Lin B (2006) Integrated isotachophoretic preconcentration with zone electrophoresis separation on a quartz microchip for UV detection of flavonoids. Electrophoresis 27:4904–4909Google Scholar
  99. MacDonald MP, Spalding GC, Dholakia K (2003) Microfluidic sorting in an optical lattice. Nature 426:421–424Google Scholar
  100. MacDonald MP, Neale S, Paterson L, Richies A, Dholakia K, Spalding GC (2004) Cell cytometry with a light touch: sorting microscopic matter with an optical lattice. J Biol Regul Homeost Agents 18:200–205Google Scholar
  101. Malmqvist M (1993) Biospecific interaction analysis using biosensor technology. Nature 361:186–187Google Scholar
  102. Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical-analysis systems—a novel concept for chemical sensing. Sens Actuators B 1:244–248Google Scholar
  103. Maruo S, Inoue H (2006) Optically driven micropump produced by three-dimensional two-photon microfabrication. Appl Phys Lett 89:144101Google Scholar
  104. Mawatari K, Shimoide (2006) Reflective thermal lens detection device. Lab Chip 6:127–130Google Scholar
  105. Mawatari K, Naganuma Y, Shimoide K (2005) Portable thermal lens spectrometer with focusing system. Anal Chem 77:687–692Google Scholar
  106. Mawatari K, Tokeshi M, Kitamori T (2006) Quantitative detection and fixation of single and multiple gold nanoparticles on a microfluidic chip by thermal lens microscope. Anal Sci 22:781–784Google Scholar
  107. Mazurczyk R, Vieillard J, Bouchard A, Hannes B, Krawczyk S (2006) A novel concept of the integrated fluorescence detection system and its application in a lab-on-a-chip microdevice. Sens Actuators B 118:11–19Google Scholar
  108. McClain MA, Culbertson CT, Jacobson SC, Ramsey JM (2001) Flow cytometry of Escherichia coli on microfluidic devices. Anal Chem 73:5334–5338Google Scholar
  109. Mellor CD, Bain CD (2006) Array formation in evanescent waves. Chem Phys Chem 7:329–332Google Scholar
  110. Miller SE (1969) Integrated optics: an introduction. Bell Syst Tech J 48:2059–2069Google Scholar
  111. Milne G, Rhodes D, MacDonald M, Dholakia K (2007) Fractionation of polydisperse colloid with acousto-optically generated potential energy landscapes. Opt Lett 32:1144–1146Google Scholar
  112. Mitchell GL (1977) Absorption spectroscopy in scattering samples using integrated-optics. IEEE J Quantum Electron 13:173–176Google Scholar
  113. Mitra B, Wilson CG, Que L, Selvaganapathy P, Gianchandani Y (2006) Microfluidic discharge-based optical sources for detection of biochemicals. Lab Chip 6:60–65Google Scholar
  114. Mogensen KB, Petersen NJ, Hübner J, Kutter JP (2001) Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices. Electrophoresis 22:3930–3938Google Scholar
  115. Mogensen KB, El-Ali J, Wolff A, Kutter JP (2003) Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems. Appl Opt 42:4072–4079Google Scholar
  116. Mogensen KB, Eriksson F, Gustafsson O, Nikolajsen RPH, Kutter JP (2004) Pure-silica optical waveguides, fiber couplers, and high-aspect ratio submicrometer channels for electrokinetic separation devices. Electrophoresis 25:3788–3795Google Scholar
  117. Morgan H, Holmes D, Green NG (2006) High speed simultaneous single particle impedance and fluorescence analysis on a chip. Curr Appl Phys 6:367–370Google Scholar
  118. Moring SE, Reel RT, van Soest REJ (1993) Optical improvements of a Z-shaped cell for high-sensitivity UV absorbance detection in capillary electrophoresis. Anal Chem 65:3454–3459Google Scholar
  119. Mortensen NA, Xiao S (2007) Slow-light enhancement of Beer-Lambert-Bouguer absorption. Appl Phys Lett 90:141108Google Scholar
  120. Neale SL, MacDonald MP, Dholakia K, Krauss TF (2005) All-optical control of microfluidic components using form birefringence. Nat Mater 4:530–533Google Scholar
  121. Neuman KC, Chadd EH, Liou GF, Bergman K, Block SM (1999) Characterization of photodamage to Escherichia coli in optical traps. Biophys J 77:2856–2863Google Scholar
  122. Nirode WF, Devault GL, Sepaniak MJ, Cole RO (2000) On-column surface-enhanced Raman spectroscopy detection in capillary electrophoresis using running buffers containing silver colloidal solutions. Anal Chem 72:1866–1871Google Scholar
  123. Oh S-H, Lee S-H, Kenrick SA, Daugherty PS, Soh HT (2006) Microfluidic protein detection through genetically engineered bacterial cells. J Proteome Res 5:3433–3437Google Scholar
  124. Ozkan M, Wang M, Ozkan C, Flynn R, Birkbeck A, Esener S (2003) Optical manipulation of objects and biological cells in microfluidic devices. Biomed Microdev 5:61–67Google Scholar
  125. Pamme N, Koyama R, Manz A (2003) Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay. Lab Chip 3:187–192Google Scholar
  126. Pamme N, Eijkel JCT, Manz A (2006) On-chip free-flow magnetophoresis: Separation and detection of mixtures of magnetic particles in continuous flow. J Magn Magn Mater 307:237–244Google Scholar
  127. Park T, Lee S, Seong GH, Choo J, Lee EK, Kim YS, Ji WH, Hwang SY, G D-G, Lee S (2005) Highly sensitive signal detection of duplex dye-labelled DNA oligonucleotides in a PDMS microfluidic chip: confocal surface-enhanced Raman spectroscopic study. Lab Chip 5:437–442Google Scholar
  128. Paterson L, Papagiakoumou E, Milne G, Garcés-Chávez V, Tatarkova SA, Sibbett W, Gunn-Moore FJ, Bryant PE, Riches AC, Dholakia K (2005) Light-induced cell separation in a tailored optical landscape. Appl Phys Lett 87:123901Google Scholar
  129. Phillips KS, Cheng Q (2007) Recent advances in surface plasmon resonance based techniques for bioanalysis. Anal Bioanal Chem 387:1831–1840Google Scholar
  130. Pregibon DC, Toner M, Doyle PS (2007) Multifunctional encoded particles for high-throughput biomolecule analysis. Science 315:1393–1396Google Scholar
  131. Prikulis J, Svedberg F, Käll M, Enger J, Ramser K, Godsör M, Hanstorp D (2004) Optical spectroscopy of single trapped metal nanoparticles in solution. Nano Lett 4:115–118Google Scholar
  132. Psaltis D, Quake SR, Yang C (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442:381–386Google Scholar
  133. Quigley GR, Harris RD, Wilkinson JS (1999) Sensitivity enhancement of integrated optical sensors by use of thin high-index films. Appl Opt 38:6036–6039Google Scholar
  134. Quirino JP, Terabe S (1998) Exceeding 5000-fold concentration of dilute analytes in micellar electrokinetic chromatography. Science 282:465–468Google Scholar
  135. Raman CV (1928) A new type of secondary radiation. Nature 121:501–502Google Scholar
  136. Ramser K, Logg K, Goksör M, Engar J, Käll M, Hanstorp D (2004) Resonance Raman spectroscopy of optically trapped functional erythrocytes. J Biomed Opt 9:593–600Google Scholar
  137. Ramser K, Engar J, Goksör M, Hanstorp D, Logg K, Käll M (2005) A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells. Lab Chip 5:431–436Google Scholar
  138. Revermann T, Götz S, Karst U (2007) Quantitative analysis of thiols in consumer products on a microfluidic CE chip with fluorescence detection. Electrophoresis 28:1154–1160Google Scholar
  139. Riegger L, Grumann, Nann T, Riegler J, Ehlert O, Bessler W, Mittenbuehler K, Urban G, Pastewka L, Brenner T, Zengerle R, Ducreé J (2006) Read-out concepts for multiplexed bead-based fluorescence immunoassays on centrifugal microfluidic platforms. Sens Actuator A 126:455–462Google Scholar
  140. Ro KW, Lim K, Shim BC, Hahn JH (2005) Integrated light collimating system for extended optical-path-length absorbance detection in microchip-based capillary electrophoresis. Anal Chem 77:5160–5166Google Scholar
  141. Rusciano G, De Luca AC, Sasso A, Pesce G (2006) Phase sensitive detection in Raman tweezers. Appl Phys Lett 89:261116Google Scholar
  142. Salimi-Moosavi H, Jiang Y, Lester L, McKinnon G, Harrison DJ (2000) A multireflection cell for enhanced absorbance detection in microchip-based capillary electrophoresis devices. Electrophoresis 21:1291–1299Google Scholar
  143. Sarov Y, Ivanov T, Ivanova K, Sarova V, Capek I, Rangelow IW (2006) Diffraction under total internal reflection for micro-fluidic analysis. Appl Phys A 84:191–196Google Scholar
  144. Sato K, Egami A, Odake T, Tokeshi M, Aihara M, Kitamori T (2006) Monitoring of intercellular messengers released from neuron networks cultured in a microchip. J Chromatogr A 1111:228–232Google Scholar
  145. Schroll RD, Wunenburger R, Casner A, Zhang WW, Delville J-P (2007) Liquid transport due to light scattering. Phys Rev Lett 98:133601Google Scholar
  146. Schrum DP, Culbertson CT, Jacobson SC, Ramsey JM (1999) Microchip flow cytometry using electrokinetic focusing. Anal Chem 71:4173–4177Google Scholar
  147. Sepúlveda B, Sánchez del Río J, Moreno M, Blanco FJ, Mayora K, Domínguez C, Lechuga LM (2006) Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices. J Opt A Pure Appl Opt 8:S561–S566Google Scholar
  148. Shao H, Kumar D, Lear KL (2006) Single-cell detection using optofluidic intracavity spectroscopy. IEEE Sensors J 6:1543–1550Google Scholar
  149. Shen Z, Liu X, Long Z, Liu D, Ye N, Qin J, Dai Z, Lin B (2006) Parallel analysis of biomolecules on a microfabricated capillary array chip. Electrophoresis 27:1084–1092Google Scholar
  150. Simonnet C, Groisman A (2006) High-throughput and high-resolution flow cytometry in molded microfluidic devices. Anal Chem 78:5653–5663Google Scholar
  151. Smirnova A, Mawatari K, Hibara A, Proskurnin MA, Kitamori T (2006) Micro-multiphase laminar flows for the extraction and detection of carbaryl derivative. Anal Chim Acta 558:69–74Google Scholar
  152. Smit M, Hill M, Baets R, Bente E, Dorren H, Karouta F, Koenraad P, Koonen T, Leitjens X, Nötzel, Oei S, de Waardt H, van der Tol J, Khoe D (2007) How complex can integrated optical circuits become? In: Proceedings of 13th European conference on integrated optics (ECIO 2007) Copenhagen, Paper ThPT2Google Scholar
  153. Song WZ, Zhang XM, Liu AQ, Lim CS, Yap PH, Hosseini HMM (2006) Refractive index measurement of single living cells using on-chip Fabry–Perot cavity. Appl Phys Lett 89:203901Google Scholar
  154. Soughayer JS, Krasieva T, Jacobson SC, Ramsey JM, Tromberg BJ, Allbritton NL (2000) Characterisation of cellular optoporation with distance. Anal Chem 72:1342–1347Google Scholar
  155. Strehle KR, Cialla D, Rösch P, Hankel T, Köhler, Popp J (2007) A reproducible surface-enhanced Raman spectroscopy approach. online SERS measurements in a segmented microfluidic system. Anal Chem 79:1542–1547Google Scholar
  156. Sun Y, Yin X-F (2006a) Novel multi-depth microfluidic chip for single cell analysis. J Chromatogr A 1117:228–233Google Scholar
  157. Sun YY, Ong LS, Yuan X-C (2006b) Composite-microlens-array-enabled microfluidic sorting. Appl Phys Lett 89:141108Google Scholar
  158. Svoboda K, Block SM (1994) Optical trapping of metallic Rayleigh particles. Optics Letters 19:930–932CrossRefGoogle Scholar
  159. Tamaki E, Hibara A, Tokeshi M, Kitamori T (2005) Tunable thermal lens spectrometry utilizing microchannel-assisted thermal lens spectrometry. Lab Chip 5:129–131Google Scholar
  160. Terray A, Oakey J, Marr DWM (2002) Microfluidic control using colloidal devices. Science 296:1841–1844Google Scholar
  161. Terray A, Arnold J, Hart SJ (2005) Enhanced optical chromatography in a PDMS microfluidic system. Opt Express 13:10406–10415Google Scholar
  162. Tokeshi M, Uchida M, Hibara A, Sawada T, Kitamori T (2001) Determination of subyoctomole amounts of nonfluorescent molecules using a thermal lens microscope: subsingle-molecule determination. Anal Chem 73:2112–2116Google Scholar
  163. Tokeshi M, Yamaguchi J, Hattori A, Kitamori T (2005) Thermal lens micro optical systems. Anal Chem 77:626–630Google Scholar
  164. Thurn R, Kiefer W (1984) Raman-microsampling technique applying optical levitation by radiation pressure. Appl Spectrosc 38:78–83Google Scholar
  165. Veldhuis GJ, Parriaux O, Hoekstra HJWM, Lambeck PV (2000) Sensitivity enhancement in evanescent optical waveguide sensors. J Lightwave Technol 18:677–682Google Scholar
  166. Viskari PJ, Landers JP (2006) Unconventional detection methods for microfluidic devices. Electrophoresis 27:1797–1810Google Scholar
  167. Wang Z, El-Ali J, Engelund M, Gotsaed T, Perch-Nielsen IR, Mogensen KB, Snakenborg D, Kutter JP, Wolff A (2004) Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements. Lab Chip 4:372–377Google Scholar
  168. Wang MM, Tu E, Raymond DE, Yang JM, Zhang H, Hagenb N, Dees B, Mercer EM, Forster AH, Kariv I, Marchand PJ, Butler WF (2005) Microfluidic sorting of mammalian cells by optical force switching. Nat Biotech 23:83–87Google Scholar
  169. Wang Z, Hansen O, Petersen PK, Rogeberg A, Kutter JP, Bang DD, Wolff A (2006) Dielectrophoresis microsystem with integrated flow cytometers for on-line monitoring of sorting efficiency. Electrophoresis 27:5081–5092Google Scholar
  170. Wheeler AR, Chah S, Whelan RJ, Zare RN (2004) Poly(dimethylsiloxane) microfluidic flow cells for surface plasmon resonance spectroscopy. Sens Actuators B 98:208–214Google Scholar
  171. Witek MA, Wei S, Vaidya B, Adams AA, Zhu L, Stryjewski W, McCarley RL, Soper SA (2004) Cell transportation via electromigration in polymer-based microfluidic devices. Lab Chip 4:464–472Google Scholar
  172. Xia YN, Whitesides GM (1998) Soft lithography. Ann Rev Mater Sci 28:153–184Google Scholar
  173. Xiang Q, Hu G, Gao Y, Li D (2006) Miniaturized immunoassay microfluidic system with Electrokinetic control. Biosens Bioelectron 21:2006–2009Google Scholar
  174. Xie C, Li Y-Q (2002) Raman spectra and optical trapping of highly refractive and non-transparent particles. Appl Phys Lett 81:951–953Google Scholar
  175. Xie C, Chen D, Li Y-Q (2005) Raman sorting and identification of single living micro-organisms with optical tweezers. Opt Lett 30:1800–1802CrossRefGoogle Scholar
  176. Yamaguchi N, Ohba H, Nasu M (2006) Simple detection of small amounts of Pseudomonas cells in milk by using a microfluidic device. Lett Appl Microbiol 43:631–636Google Scholar
  177. Yamauchi M, Mawatari K, Hibara A, Tokeshi M, Kitamori T (2006a) Circular dichroism thermal lens microscope for sensitive chiral analysis on microchip. Anal Chem 78:2646–2650Google Scholar
  178. Yamauchi M, Tokeshi M, Yamaguchi J, Fukuzawa T, Hattori A, Hibara A, Kitamori T (2006b) Miniaturized thermal lens and fluorescence detection system for microchemical chips. J Chromatogr A 1106:89–93Google Scholar
  179. Yan Q, Chen RS, Cheng J-K (2006) Highly sensitive fluorescence detection with Hg-lamp and photon counter in microchip capillary electrophoresis. Anal Chim Acta 555:246–249Google Scholar
  180. Yang S-Y, Hsiung S-K, Hung Y-C, Chang C-M, Liao T-L, Lee G-B (2006) A cell counting/sorting system incorporated with a microfabricated flow cytometer chip. Meas Sci Technol 17:2001–2009Google Scholar
  181. Yea K-H, Lee S, Kyong JB, Choo J, Lee EK, Joo S-W, Lee S (2005) Ultra-sensitive trace analysis of cyanide water pollutant in a PDMS microfluidic channel using surface-enhanced Raman spectroscopy. Analyst 130:1009–1011Google Scholar
  182. Yea K-H, Lee S, Choo J, Oh C-H, Lee S (2006) Fast and sensitive analysis of DNA hybridization in a PDMS micro-fluidic channel using fluorescence resonance energy transfer. Chem Commun (14):1509–1511Google Scholar
  183. Yeh H-C, Puleo CM, Lim TC, Ho Y-P, Giza PE, Huang RCC, Wang T-H (2006) A microfluidic-FCS platform for investigation on the dissociation of Sp1-DNA complex by doxorubicin. Nucleic Acids Res 34:e144–e152Google Scholar
  184. Yi C, Li C-W, Ji S, Yang M (2006a) Microfluidics technology for manipulation and analysis of biological cells. Anal Chim Act 560:1–23Google Scholar
  185. Yi C, Zhang Q, Li C-W, Yang J, Zhao J, Yang M (2006b) Optical and electrochemical detection techniques for cell-based microfluidic systems. Anal Bioanal Chem 384:1259–1268Google Scholar
  186. Ymeti A, Kanger JS, Greve J, Besselink GAJ, Lambeck PV, Wijn RR, Heideman RG (2005) Integration of microfluidics with a four-channel integrated optical Young interferometer immunoassay. Biosens Bioelectron 20:1417–1421Google Scholar
  187. Ymeti A, Greve J, Lambeck PV, Wink T, van Hövell SWFM, Beumer TAM, Wijn RR, Heideman RG, Subramaniam V, Kanger JS (2007) Fast, ultrasensitive virus detection using a Young interferometer sensor. Nano Lett 7:394–397Google Scholar
  188. Yuen PK, Fontaine NH, Quesada MA, Mazumder P, Bergman R, Mozdy EJ (2005) Self-referencing a single waveguide-grating sensor in a micron-sized deep flow chamber for label-free biomolecular binding assays. Lab Chip 5:959–965Google Scholar
  189. Yun K-S, Lee D, Kim H-S, Yoon E (2006) A microfluidic chip for measurement of biomolecules using microbead-based quantum dot fluorescence assay. Meas Sci Technol 17:3178–3183Google Scholar
  190. Zhang H, Tu E, Hagen ND, Schnabel CA, Paliotti MJ, Hoo WS, Nguyen PM, Kohrumel JR, Butler WF, Chachisvillis, Marchand PJ (2004) Time-of-flight optophoresis analysis of live whole cells in microfluidic channels. Biomed Microdevices 6:11–21Google Scholar
  191. Zhang Y, Bahns J, Jin Q, Divan R, Chen L (2006) Toward the detection of a single virus particle in serum. Anal Biochem 356:161–170Google Scholar
  192. Zhu L, Lee CS, DeVoe DL (2006) Integrated microfluidic UV absorbance detector with attomol-level sensitivity for BSA. Lab Chip 6:115–120MATHGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Optoelectronics Research CentreUniversity of SouthamptonSouthamptonUK

Personalised recommendations