Microfluidics and Nanofluidics

, Volume 4, Issue 1–2, pp 3–16 | Cite as

Optofluidic waveguides: I. Concepts and implementations

  • Holger SchmidtEmail author
  • Aaron R. Hawkins
Research Paper


We review recent developments and current status of liquid-core optical waveguides in optofluidics with emphasis on suitability for creating fully planar optofluidic labs-on-a-chip. In this first of two contributions, we give an overview of the different waveguide types that are being considered for effectively combining micro and nanofluidics with integrated optics. The large number of approaches is separated into conventional index-guided waveguides and more recent implementations using wave interference. The underlying principle for waveguiding and the current status are described for each type. We then focus on reviewing recent work on microfabricated liquid-core antiresonant reflecting optical (ARROW) waveguides, including the development of intersecting 2D waveguide networks and optical fluorescence and Raman detection with planar beam geometry. Single molecule detection capability and addition of electrical control for electrokinetic manipulation and analysis of single bioparticles are demonstrated. The demonstrated performance of liquid-core ARROWs is representative of the potential of integrated waveguides for on-chip detection with ultrahigh sensitivity, and points the way towards the next generation of high-performance, low-cost and portable biomedical instruments.


Optofluidics Integrated optics Waveguides Fluorescence spectroscopy Single molecule detection 



We gratefully acknowledge the contributions of our colleagues D.W. Deamer, H.F. Noller, J.Z. Zhang, U. Hakanson, and students D. Yin, J.P, Barber, P. Measor, E. Lunt, M. Rudenko, and S. Kuehn. We also acknowledge funding for this work by the National Institutes of Health (NIH/NIBIB) under grants R21EB003430 and R01EB006097, the National Science Foundation (NSF) under grant ECS-0528730, a NASA/UARC Aligned Research Program (ARP) grant, a California Systemwide Biotechnology Research and Education Program Training Grant (UC-GREAT 2005-245), a National Academies Keck Futures Initiative Award (NAKFI-Nano14), and a grant from the David Huber Foundation.


  1. Agrawal G (2006) Nonlinear fiber optics, 4th edn. Academic, LondonGoogle Scholar
  2. Almeida VR, Xu Q, Barrios CA, Lipson M (2004) Guiding and confining light in void nanostructures. Opt Lett 29:1209–1211CrossRefGoogle Scholar
  3. Archambault JL, Black RJ, Lacroix S, Bures J (1993) Loss calculations for antiresonant waveguides. J Lightwave Technol 11:416–423CrossRefGoogle Scholar
  4. Atencia J, Beebe DJ (2005) Controlled microfluidic interfaces. Nature 437:648–655CrossRefGoogle Scholar
  5. Balslev S, Kristensen A (2005) Microfluidic single-mode laser using high-order Bragg grating and antiguiding segments. Opt Exp 13:344–351CrossRefGoogle Scholar
  6. Bernini R, Campopiano S, Zeni L, Sarro PM (2004) ARROW optical waveguides based sensors. Sens Actuators B100:143–146Google Scholar
  7. Bernini R, DeNuccio E, Minardo A, Zeni L, Sarro PM (2007) Integrated silicon optical sensors based on hollow core waveguide. Proc SPIE 6477:647714CrossRefGoogle Scholar
  8. Campopiano S, Bernini R, Zeni L, Sarro PM (2004) Microfluidic sensor based on integrated optical hollow waveguides. Opt Lett 29:1894–1896CrossRefGoogle Scholar
  9. Coldren LA, Corzine SW (1995) Diode lasers and photonic integrated circuits. Wiley, LondonGoogle Scholar
  10. Craighead H (2006) Future lab-on-a-chip technologies for interrogating individual molecules. Nature 442:387–393CrossRefGoogle Scholar
  11. Cregan RF, Mangan BJ, Knight JC, Birks TA, Russell PSJ, Roberts PJ, Allan DC (1999) Single-mode photonic band gap guidance of light in air. Science 285:1537–1539CrossRefGoogle Scholar
  12. Datta A, Eom I, Dhar A, Kuban P, Manor R, Ahmad I, Gangopadhyay S, Dallas T, Holtz M, Temkin H, Dasgupta P (2003) Microfabrication and characterization of teflon AF-coated liquid core waveguide channels in silicon. IEEE Sens J 3:788–795CrossRefGoogle Scholar
  13. Delonge T, Fouckhardt H (1995) Integrated optical detection cell based on Bragg reflecting waveguides. J Chromat A 716:135–139CrossRefGoogle Scholar
  14. Domachuk P, Nguyen HC, Eggleton BJ, Straub M, Gu M (2004) Microfluidic tunable photonic band-gap device. Appl Phys Lett 84:1838–1840CrossRefGoogle Scholar
  15. Duguay MA, Kokubun Y, Koch T, Pfeiffer L (1986) Antiresonant reflecting optical waveguides in SiO2–Si multilayer structures. Appl Phys Lett 49:13–15CrossRefGoogle Scholar
  16. Ehlert A, Buettgenbach S (1999) Automatic sensor system for groundwater monitoring network. Proc SPIE 3857:61–69CrossRefGoogle Scholar
  17. Erickson D, Rockwood T, Emery T, Scherer A, Psaltis D (2006) Nanofluidic tuning of photonic crystal circuits. Opt Lett 31:59–61CrossRefGoogle Scholar
  18. Fink Y, Ripin DJ, Fan S, Chen C, Joannopoulos JD, Thomas EL (1999) Guiding optical light in air using an all-dielectric structure. J Lightwave Technol 17:2039–2041CrossRefGoogle Scholar
  19. Hakanson U, Measor P, Yin D, Lunt E, Hawkins AR, Sandoghdar V, Schmidt H (2007) Tailoring the transmission of liquid-core waveguides for wavelength filtering on a chip. Proc SPIE 6477:647715CrossRefGoogle Scholar
  20. Heng X, Erickson D, Baugh LR, Yaqoob Z, Sternberg PW, Psaltis D, Yang C (2006) Optofluidic microscopy: a method for implementing high resolution optical microscope on a chip. Lab Chip 6:1274–1276CrossRefGoogle Scholar
  21. Horvath R, Lindvold LR, Larsen NB (2002) Reverse-symmetry waveguides: theory and fabrication. Appl Phys B 74:383–393CrossRefGoogle Scholar
  22. Joannopoulos JD, Meade RD, Winn JN (1995) Photonic crystals: molding the flow of light. Princeton University Press, New JerseyzbMATHGoogle Scholar
  23. Koo JS, Williams RB, Gawith CBE, Watts SP, Emmerson GD, Albanis V, Smith PGR, Grossel MC (2003) UV written waveguide devices using crosslinkable PMMA-based copolymers. Electron Lett 39:394–395CrossRefGoogle Scholar
  24. Kurdi BN, Hall DG (1988) Optical waveguides in oxygen-implaneted buried-oxide SOI structures. Opt Lett 13:175–177Google Scholar
  25. Levene MJ, Korlach J, Turner SW, Fouquet M, Craighead HG, Webb WW (2003) Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299:682–686CrossRefGoogle Scholar
  26. Loncar M, Nedeljkovic D, Doll T, Vuckovic J, Scherer A, Pearsall TP (2000) Waveguiding in planar photonic crystals. Appl Phys Lett 77:1937–1939CrossRefGoogle Scholar
  27. Mach P, Dolinski M, Baldwin KW, Rogers JA, Kerbage C, Windeler RS, Eggleton BJ (2002) Tunable microfluidic optical fiber. Appl Phys Lett 80:4294–4296CrossRefGoogle Scholar
  28. Mandal S, Erickson D (2007) Optofluidic transport in liquid core waveguiding structures. Appl Phys Lett 90:184103CrossRefGoogle Scholar
  29. Marcatili EAJ (1969) Dielectric rectangular waveguide and directional coupler for integrated optics. Bell Syst Technol J 48:2071–2102Google Scholar
  30. Mawst LJ, Botez D, Zmudzinski C, Tu C (1992) Design optimization of ARROW-type diode lasers. IEEE Phot Technol Lett 4:1204–1206CrossRefGoogle Scholar
  31. McNab S, Moll N, Vlasov Y (2003) Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. Opt Exp 11:2927–2939CrossRefGoogle Scholar
  32. Measor P, Lunt EJ, Seballos L, Yin D, Zhang JZ, Hawkins AR, Schmidt H (2007) On-chip surface-enhanced Raman scattering (SERS) detection using integrated liquid-core waveguides. Appl Phys Lett 90:211107CrossRefGoogle Scholar
  33. Moerner WE, Fromm DP (2003) Methods of single-molecule fluorescence spectroscopy and microscopy. Rev Sci Inst 74:3597CrossRefGoogle Scholar
  34. Monat C, Domachuk P, Eggleton BJ (2007) Integrated optofluidics: a new river of light. Nat Photonics 1:106–114CrossRefGoogle Scholar
  35. Ng JMK, Gitlin I, Stroock AD, Whitesides GM (2002) Components for integrated PDMS microfluidic systems. Electrophoresis 23:3461–3473CrossRefGoogle Scholar
  36. Okamoto K (2005) Fundamentals of optical waveguides, 2nd edn. Academic, LondonGoogle Scholar
  37. Patterson SG, Petrich SG, Ram RJ, Kolodiejski (1999) Continuous-wave room temperature operation of bipolar cascade laser. Electron Lett 35:397–397Google Scholar
  38. Psaltis D, Quake SR, Yang C (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442:381–386CrossRefGoogle Scholar
  39. Rigler R, Elson ES (2001) Fluorescence correlation spectroscopy, 1st edn. Springer, HeidelbergGoogle Scholar
  40. Rindorf L, Jensen JB, Dufva M, Pedersen LH, Høiby PE, Bang O (2006) Photonic crystal fiber long-period gratings for biochemical sensing. Opt Exp 14:8224–8231CrossRefGoogle Scholar
  41. Risk WP, Kim HC, Miller RD, Temkin H, Gangopadhyay S (2004) Optical waveguides with an aqueous core and a low-index nanoporous cladding. Opt Exp 12:6446–6455CrossRefGoogle Scholar
  42. Russell P (2003) Photonic crystal fiber. Science 299:358–362CrossRefGoogle Scholar
  43. Schelle B, Dreß P, Franke H, Klein KF, Slupek J (1999) Physical characterization of lightguide capillary cells. J Phys D Appl Phys 32:3157–3163CrossRefGoogle Scholar
  44. Schmidt H, Yin D, Barber JP, Hawkins AR (2005) Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids. IEEE J Sel Top Quantum Electron 11:519–527CrossRefGoogle Scholar
  45. Schmidt O, Bassler M, Kiesel P, Johnson NM, Doehler G (2006) Guiding light in fluids. Appl Phys Lett 88:151109CrossRefGoogle Scholar
  46. Smolka S, Barth M, Benson O (2007) Selectively coated photonic crystal fiber for highly sensitive fluorescence detection. Appl Phys Lett 90:111101CrossRefGoogle Scholar
  47. Soref RA, Cortesi E, Namavar F, Friedman L (1991a) Vertically integrated SOI waveguides. IEEE Photon Technol Lett 3:19–21CrossRefGoogle Scholar
  48. Soref RA, Schmidtchen J, Petermann K (1991b) Large single-mode rib waveguides in GeSi-Si and SOI. IEEE J Quantum Electron 27:1971–1974CrossRefGoogle Scholar
  49. Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977–1026CrossRefGoogle Scholar
  50. Stryer L (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem 47:819CrossRefGoogle Scholar
  51. Temelkuran B, Hart SD, Benoit G, Joannopoulos, Fink Y (2002) Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature 420:650–653CrossRefGoogle Scholar
  52. Tiefenthaler K, Lukosz W (1989) Sensitivity of grating couplers as integrated-optical chemical sensors. J Opt Soc Am B 6:209Google Scholar
  53. Uranus HP, Hoekstra HJWM, van Groesen E (2006) Considerations on material composition for low-loss hollow-core integrated optical waveguides. Opt Commun 260:577–582CrossRefGoogle Scholar
  54. Vezenov DB, Mayers BT, Wolfe DB, Whitesides GM (2005) Integrated fluorescent light source for optofluidic applications. Appl Phys Lett 86:041104CrossRefGoogle Scholar
  55. White IM, Suter JD, Oveys H, Fan X, Smith TL, Zhang J, Koch BJ, Haase MA (2007) Universal coupling between metal-clad waveguides and optical ring resonators. Opt Exp 15:646–651CrossRefGoogle Scholar
  56. Whitesides GM (2006) The origins and future of microfluidics. Nature 442:368CrossRefGoogle Scholar
  57. Winn JN, Fink J, Fan S, Joannopoulos JD (1998) Omnidirectional reflection from a one-dimensional photonic crystal. Opt Lett 23:1573Google Scholar
  58. Wolfe DB, Conroy RS, Garstecki P, Mayers BT, Fischbach MA, Paul KE, Prentiss M, Whitesides GM (2004) Dynamic control of liquid-core/liquid-cladding optical waveguides. PNAS 101:12434–12438CrossRefGoogle Scholar
  59. Wolfe DB, Vezenov DV, Mayers BT, Whitesides GM, Conroy RS, Prentiss MG (2005) Diffusion-controlled optical elements for optofluidics. Appl Phys Lett 87:181105CrossRefGoogle Scholar
  60. Xu Y, Lee RK, Yariv A (2000) Asymptotic analysis of Bragg fiber. Opt Lett 25:1756–1758CrossRefGoogle Scholar
  61. Xu Q, Almeida VR, Panepucci RR, Lipson M (2004) Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material Opt. Lett 29:1626–1628Google Scholar
  62. Yan H, Gu C, Yang C, Liu J, Jin G, Zhang J, Hou L, Yao Y (2006) Hollow core photonic crystal fiber surface-enhanced Raman probe. Appl Phys Lett 89:204101CrossRefGoogle Scholar
  63. Yeh P (2005) Optical waves in layered media, 2nd edn. Wiley, LondonGoogle Scholar
  64. Yeh P, Yariv A (1978) Bragg reflection waveguides. Opt Comm 19:427–430CrossRefGoogle Scholar
  65. Yeh P, Yariv A, Hong C (1977) Electromagnetic propagation in periodic stratified media. I. General theory J Opt Soc Am 67:423–438Google Scholar
  66. Yeh P, Yariv A, Marom E (1978) Theory of Bragg fiber. J Opt Soc Am 68:1196–1201CrossRefGoogle Scholar
  67. Yin D, Barber JP, Hawkins AR, Deamer DW, Schmidt H (2004) Integrated optical waveguides with liquid cores. Appl Phys Lett 85:3477–3479CrossRefGoogle Scholar
  68. Yin D, Barber JP, Hawkins AR, Schmidt H (2005a) Waveguide loss optimization in hollow-core ARROW waveguides. Opt Exp 13:9331–9336CrossRefGoogle Scholar
  69. Yin D, Barber JP, Lunt EJ, Hawkins AR, Schmidt H (2005b) Optical characterization of arch-shaped ARROW waveguides with liquid cores. Opt Exp 13:10564–10569CrossRefGoogle Scholar
  70. Yin D, Barber JP, Deamer DW, Hawkins AR, Schmidt H (2006a) Single-molecule detection sensitivity using planar integrated optics on a chip. Opt Lett 31:2136–2138CrossRefGoogle Scholar
  71. Yin D, Barber JP, Hawkins AR, Schmidt H (2006b) Single molecule sensitivity and electrically controlled fluorescence detection in integrated planar ARROW waveguides. 2006 Conference on Lasers and Electro-optics (CLEO)Google Scholar
  72. Yin D, Lunt EJ, Barman A, Hawkins AR, Schmidt H (2007a) Microphotonic control of single molecule fluorescence correlation spectroscopy using planar optofluidics. Opt Exp 15:7290–7295CrossRefGoogle Scholar
  73. Yin D, Lunt EJ, Rudenko MI, Deamer DW, Hawkins AR, Schmidt H (2007b) Planar optofluidic chip for single particle detection, manipulation, and analysis. Lab Chip. doi: 10.1039/b708861b
  74. Zhang D, Lien V, Berdichevsky Y, Choi J, Lo Y (2003) Fluidic adaptive lens with high focal length tunability. Appl Phys Lett 82:3171–3172CrossRefGoogle Scholar
  75. Zourob M, Mohr S, Treves Brown BJ, Fielden PR, MCDonnell M, Goddard NJ (2003) The development of metal clad leaky waveguide sensor for the detection of particles. Sens Actuators B 90:296–307CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.School of Engineering, MS: SOE-2, UC Santa CruzSanta CruzUSA
  2. 2.ECEn DepartmentBrigham Young UniversityProvoUSA

Personalised recommendations